簡易檢索 / 詳目顯示

研究生: 黃建達
Huang, Chien-Ta
論文名稱: 具任務規劃、人機整合、及狀態監控能力之無人搬運車發展及其於智慧工廠之應用
Development of Automated Guided Vehicles Capable with Task Planning, Human-Machine Integration, and Status Monitoring for Smart Factory Applications
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 171
中文關鍵詞: 無人搬運車智慧工廠虛實整合系統人機整合狀態監控
外文關鍵詞: Automated guided vehicle, Smart factory, Cyber-physical system, Human-machine integration, Status monitoring
相關次數: 點閱:192下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來工業4.0的概念被提出,智慧工廠相關技術發展也日益受到重視,利用虛實整合系統(Cyber-Physical System, CPS),將廠內之設備歸納於實體世界(Physical world),透過網路協定(Networking)上傳設備之資訊至虛擬空間(Cyber space)的使用者介面,對傳統製造業進行資訊數位化與流程客製化。無人搬運車(Automated Guided Vehicle, AGV)作為工廠內之物流要角,為唯一穿梭產線與倉儲之間之設備,藉由其高效、準確等特性,可迅速完成搬運任務。然而多數針對無人搬運車之研究,著墨於導航與路徑規劃方面,缺乏了狀態監控、通訊協定以及使用者介面等落實虛實整合系統之必要部分。因此本文以一自行設計與實現之全向輪自走車為載具,提出與展示無人搬運車應用於智慧工廠之三大使用場景,任務規劃、人機整合以及狀態監控,並利用虛實整合之概念依序由實體世界載具建立、導航方式實現、感測器安裝,通訊協定之TCP Socket、Http連線將實體世界裡之資訊上傳至虛擬空間中,建立使用者介面、人機整合資訊以及狀態監控面板。任務規劃場景中,工作人員透過使用者介面將無人搬運車調派至指定地點,與機械手臂進行資訊交換以夾取物件,完成任務;人機整合場景中,利用關鍵點檢測(Keypoint detection)算法,檢測來自監控畫面中人員之動作意圖,使無人搬運車做出適當反應;狀態監控場景中,監控面板根據感測器之資訊,將工況非正常之無人搬運車調離產線,避免阻礙其他無人搬運車之運行,以維持生產效率。綜合以上研究成果,期望本文所研究之方法與開發之功能,未來可廣泛應用於智慧工廠與相關產業。

    Automated guided vehicles (AGVs) play key roles in the modern manufacturing industry due to the ability to connect production line and storage system. In this decade, the concept of Industry 4.0 has been put forward to not only automate production lines but also digitize information and processes, emphasizing the application of Cyber-physical system (CPS) in the smart factory. The physical world contains the devices such as machine tools, conveyor belts, and AGVs. The cyber space offers user interface and monitoring dashboard, that allows users to make orders and understand the status of factories. The bridge between physical world and cyber space is networking, uploading the information from physical world, sending commands from cyber space. However, lots of research has focused on the navigation and route planning of AGVs, lacking key parts of CPS like status monitoring, networking, user interface. As a result, this thesis develops a self-design AGV based on Omni-wheels, demonstrating three important scenarios in the smart factory, including task planning, human-machine integration, and status monitoring. Utilizing the concept of CPS, an AGV platform is set up and sensors installed in the real world. In the communication protocol part, taking advantage of TCP Socket and Http, transmitting the information to the cyber space. Finally, user interface, human-machine integration, status-monitoring dashboard are established in the cyber space to achieve scenes as follows. First, workers can allocate AGVs carrying materials to specific location where manipulators are through the user interface, then manipulators gripping materials to finish task planning. Second, by the assistance of artificial neutral network algorithm called Keypoint detection, the positions of human’s joints can be discovered from the video captured by the IP camera. Human’s intention can be analyzed by these positions, and AGV will react simultaneously. Third, in order to maintain the production efficiency, when the status-monitoring dashboard detects the abnormal status of the AGV, the AGV will be transferred away from the production line to make sure others successfully finish their tasks. Based on the above research results, it is expected that the methods developed in this thesis can be widely applied in smart factories and related industries in the future.

    摘要 I Abstract II Extend Abstract III 致謝 XXXI 目錄 XXXIII 圖目錄 XXXVII 表目錄 XLIV 符號說明 XLV 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機與目的 7 1.4 實驗室相關研究 8 1.5 研究方法 10 1.6 全文架構 11 第二章 研究背景 13 2.1 本章介紹 13 2.2 無人搬運車與虛實整合系統 15 2.3 輪式機器人運動控制 19 2.4 機電感測器與狀態監控 23 2.5 電腦視覺相關技術 25 2.6 物聯網與通訊協定 32 2.7 討論與本章結論 34 第三章 整體研究概念設計 35 3.1 本章介紹 35 3.2 情境設計 37 3.3 實體世界載具建立 39 3.4 物聯網通訊協定 42 3.5 虛擬空間應用 44 3.6 本章結論 45 第四章 無人搬運車之設計與系統建立 46 4.1 本章介紹 46 4.2 無人搬運車整體設計 48 4.3 硬體組裝與實現 52 4.4 運動學分析與循線功能 58 4.5 循線功能實現與測試結果 63 4.6 本章結論 68 第五章 ArUco標籤路徑規劃之應用 69 5.1 本章介紹 69 5.2 ArUco標籤應用說明 71 5.3 相機校正 74 5.4 ArUco標籤定位實驗 77 5.5 ArUco標籤應用於無人搬運車 84 5.6 本章結論 86 第六章 機電感測器應用與狀態監控 87 6.1 本章介紹 87 6.2 機電感測器整體規劃說明 89 6.3 機電感測器安裝、訊號擷取與數據處理 90 6.4 機電感測器資訊應用與監控面板建立 96 6.5 討論與本章結論 102 第七章 通訊協定與雲端訊號處理 103 7.1 本章介紹 103 7.2 情境說明 105 7.3 中央電腦與無人搬運車溝通 107 7.4 中央電腦多機整合 109 7.5 中央電腦感測器資訊整合 112 7.6 監控影像上傳與關鍵點檢測 114 7.7 雲端伺服器上傳 118 7.8 本章結論 119 第八章 任務規劃、人機整合、及狀態監控 120 8.1 本章介紹 120 8.2 情境說明 122 8.3 無人搬運車任務規劃 124 8.4 無人搬運車人機整合 127 8.5 狀態監控機制建立 130 8.6 本章結論 133 第九章 研究結果與討論 134 9.1 全文歸納 134 9.2 整合成果與相關開發技術討論 137 9.3 未來工作 144 第十章 結論與未來展望 147 10.1 本文結論 147 10.2 本文貢獻 149 10.3 未來工作 151 參考文獻 152 附錄A 硬體規格表 160 附錄B 程式碼 162

    [1] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems in manufacturing,” CIRP Annals Manufacturing Technology, vol. 65, no. 2, pp. 621-641, 2016.
    [2] X. Yao, J. Zhou, Y. Lin, Y. Li, H. Yu, and Y. Liu, “Smart manufacturing based on cyber-physical systems and beyond,” Journal of Intelligent Manufacturing, vol. 30, pp. 2805-2817, 2019.
    [3] J. Yan, M. Zhang and Z. Fu, “An intralogistics-oriented Cyber-Physical System for workshop in the context of Industry 4.0,” Procedia Manufacturing, vol. 35, pp. 1178-1183, 2019.
    [4] N. Shariatzadeh, T. Lundholm, L. Lindberg, and G. Sivard, “Integration of digital factory with smart factory based on Internet of Things,” Procedia CIRP, vol. 60, pp. 512-517, 2016
    [5] H. Neradilova and G. Fedorko, “Simulation of the supply of workplaces by the AGV in the digital factory,” Procedia Engineering, vol. 192, pp. 638-643, 2017.
    [6] M. A. Saliba, D. Zammit, and S. Azzopardi, “Towards practical, high-level guidelines to promote company strategy for the use of reconfigurable manufacturing automation,” Robotics and Computer-Integrated Manufacturing, vol. 47, pp. 53-60, 2017.
    [7] 智慧工廠概念圖 https://kinexon.com/manufacturing
    [8] S. Wang, J. Wan, D. Zhang D. Li, and C. Zhang, “Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination,” Computer Networks, vol. 101, no. 4, pp. 158-168, 2016.
    [9] 無人搬運車相關應用 沿地面引導線前進至指定位置
    https://www.indevagroup.com/news/industrial-automation-automatic-guided-vehicles-production-line/
    [10] 無人搬運車相關應用 與機械手臂協作
    http://www.rgk-fa.com/motion.asp?menuid=9419&lgid=1&siteid=100490&pgid=9&e=
    [11] J. Mehami, M. Nawi, and R. Zhong, “Smart automated guided vehicles for manufacturing in the context of Industry 4.0,” 46th SME North American Manufacturing Research Conference, College Station, Texas, USA, 2018.
    [12] 孫翊淳, 基於類神經網路之狀態監診系統開發及其在工具機刀具狀態診斷之應用, 國立成功大學機械工程學系碩士論文, 2019.
    [13] A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, A. C. Chuang, J. J. Sun, “A Review of Essential Standards and Patent Landscapes for the Internet of Things: a Key Enabler for Industry 4.0,” Advanced Engineering Informatics, vol. 33, pp. 208–229, 2017.
    [14] J. Wan, S. Tang, Z. Shu, D, Li, S. Wang, M. Imran, and A. V. Vasilakos, ‘‘Software-Defined Industrial Internet of Things in the Context of Industry 4.0’’, IEEE Sensors Journal, vol. 16, pp. 7373-7380, 2016.
    [15] D. Jung, Z. Zhang, and M. Winslett, “Vibration Analysis for IoT Enabled Predictive Maintenance,” 2017 IEEE 33rd International Conference on Data Engineering, San Diego, California, USA, 2017.
    [16] O. Mörth, C. Emmanouilidis, N. Hafner, and M. Schadlera, “Cyber-physical systems for performance monitoring in production intralogistics,” Computers & Industrial Engineering, vol. 142, 106333, 2020.
    [17] 陳柏維, Wiimote紅外線室內定位技術與運動控制應用於機器建築與智慧生活之研究, 國立成功大學機械工程學系碩士論文, 2010.
    [18] 顧迪, 發展Wiimote室內定位技術與全向移動載具軌跡追蹤控制器與其於智慧生活之應用, 國立成功大學機械工程學系碩士論文, 2011.
    [19] 陳名薪, 發展機器人導航方法及群體操控技術與其在智慧生活之應用, 國立成功大學機械工程學系碩士論文, 2012.
    [20] 李庭豪, Wiimote 3D定位技術之發展與其再室內移動機器人之姿態追蹤應用, 國立成功大學機械工程學系碩士論文, 2015.
    [21] 蔡瑞敏, 多波段微機電加速規整合設計於工具主軸振動監況應用, 國立成功大學機械工程學系碩士論文, 2018.
    [22] 韓伯炫, 機械手臂動態分析、視覺引導、及感測器網路整合於智慧工廠之應用, 國立成功大學機械工程學系碩士論文, 2020.
    [23] 牽引式AGV
    https://www.benqbusinesssolution.com/products-solutions/尾部牽引式agv-磁導航-雷射導航
    [24] 潛伏式AGV
    https://www.benqbusinesssolution.com/products-solutions/低床型潛伏牽引式agv-磁導航
    [25] 旋轉升舉式AGV
    https://www.benqbusinesssolution.com/products-solutions/潛伏頂升原地旋轉式agv-磁導航
    [26] 叉車式AGV
    https://www.benqbusinesssolution.com/products-solutions/牙叉堆高式agv-激光導航-雷射導航
    [27] J. Long and C. L. Zhang, "The summary of AGV guidance technology," Advanced Materials Research, vol. 591-593, pp. 1625-1628, 2012.
    [28] L. Lynch, T. Newe, J. Clifford, J. Coleman, J. Walsh and D. Toal, "Automated Ground Vehicle (AGV) and Sensor Technologies- A Review," 2018 12th International Conference on Sensing Technology (ICST), Limerick, Ireland, 2018.
    [29] 循線式無人搬運車實際運行圖https://www.assemblymag.com/articles/92791-a-new-generation-of-agvs-are-appealing-to-small--and-midsize-manufacturers
    [30] A. Yilmaz, and H. Temeltas, “Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data,” Robotics and Autonomous Systems, vol. 122, 103285, 2019.
    [31] Y. Zhang, Z. Guo, J. Lv and Y. Liu, “A Framework for Smart Production-Logistics Systems Based on CPS and Industrial IoT,” IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4019-4032, 2018.
    [32] B. Liu, Y. Zhang, G. Zhang, and P. Zhengc, “Edge-cloud orchestration driven industrial smart product-service systems solution design based on CPS and IIoT,” Advanced Engineering Informatics ,vol. 42, 100984, 2019.
    [33] Y. Zhang, Z. Zhu and J. Lv, “CPS-Based Smart Control Model for Shopfloor Material Handling,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp. 1764-1775, 2018.
    [34] J. Li, B. Shen, L. Zhang, C. Tao, and R. Ji, “Kinematics and performance analysis of a serial hip assistive mechanism,” Advances in Mechanical Engineering, vol. 10, no. 4, pp. 1-19, 2018.
    [35] J. Xu, X. Feng, C. Jun, and S. Zhang, “Precision forward design for 3D printing using kinematic sensitivity via Jacobian matrix considering uncertainty,” The International Journal of Advanced Manufacturing Technology, vol. 110, pp. 3257–3271, 2020.
    [36] M. G. Krishnan and S. Ashok, “Kinematic Analysis and Validation of an Industrial Robot Manipulator,” TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), Kochi, India, 2019.
    [37] S. G. Tzafestas, Introduction to Mobile Robot Control. Elsevier, 2013
    [38] F. G. Pin and S. M. Killough, "A new family of omnidirectional and holonomic wheeled platforms for mobile robots," IEEE Transactions on Robotics and Automation, vol. 10, no. 4, pp. 480-489, 1994.
    [39] O. Ocak, M. Onsal and M. Aydin, “Development of a 7.5kW High Speed Interior Permanent Magnet Synchronous Spindle Motor for CNC Milling Machine,” 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece, 2018.
    [40] L. Petru, and G. Mazen, “PWM Control of a DC Motor Used to Drive a Conveyor Belt,” 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Austria, 2014.
    [41] N. Ghosh, Y. B. Ravi, A. Patra, S. Mukhopadhyay, S. Paul, A. R. Mohanty, and A. B. Chattopadhyay, “Estimation of tool wear during CNC milling using neural network-based sensor fusion,” Mechanical Systems and Signal Processing, vol. 21, no. 1, 2007.
    [42] N. Ambhore, D. Kamble, S. Chinchanikar, and V. Wayal, “Tool Condition Monitoring System: A Review,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 3419-3428, 2015.
    [43] M. S. H. Bhuiyan, I. A. Choudhury, and M. Dahari, “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning,” Journal of Manufacturing Systems, vol. 33, no. 4, pp. 476-487, 2014.
    [44] A. Holland, “Earthquake Data Recorded by the MEMS Accelerometer: Field Testing in Idaho,” Seismological Research Letter, vol. 74, no. 1, pp. 20-26, 2003.
    [45] S. B. Chaudhur, M. Sengupta, and K. Mukherjee, "Vibration Monitoring of Rotating Machines Using MEMS Accelerometer," International Journal of Scientific Engineering and Research (IJSER), vol. 2, no. 9, pp. 5-11, 2014.
    [46] 霍爾效應法與電感法量測電流示意圖
    https://www.nktechnologies.com/engineering-resources/current-sensing-theory/
    [47] 無人搬運車感測器安裝位置(非藍線部分)
    https://www.ikvrobot.com/agv_sensor.html
    [48] O. Zou, and R. Y. Zhong, “Automatic Logistics in a Smart Factory using RFID-enabled AGVs,” the 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Auckland, New Zealand, 2018.
    [49] M.K. Hor, J. Y. M. Chen, and K. S. Chen, “Wavelet Transform in Depth,” Recovery Proceedings of SPIE, vol. 2055, pp. 463-474, 1993.
    [50] M. H. F. A. Hazza, A. N. B. A. Bakar, E. Y. T. Adesta, and A. H. Taha, “Empirical study on AGV guiding in indoor manufacturing system using color sensor,” 5th International Symposium on Computational and Business Intelligence (ISCBI), Dubai, United Arab Emirates, 2017.
    [51] M.V Gomes, L.A Bássora, O Morandin, and K.C.T Vivaldini, “PID control applied on a line-follower AGV using a RGB camera,” IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016.
    [52] W. P. N. dos Reis, D. P. de Oliveria, O. Morandin Jr., “Evaluating the RGB Camera Image Resolution Variation Impact on the Performance of an AGV Position Control System,” 45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019.
    [53] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280-2292, 2014.
    [54] 常見之擴增實境標籤
    https://en.wikipedia.org
    [55] M. F. Sani and G. Karimian, “Automatic navigation and landing of an indoor ar. drone quadrotor using aruco marker and inertial sensors,” 2017 International Conference on Computer and Drone Applications, Kuching, Malaysia, 2017.
    [56] S. Noiumkar and S. Tirakoat, “Use of Optical Motion Capture in Sports Science: A Case Study of Golf Swing,” 2013 International Conference on Informatics and Creative Multimedia, Kuala Lumpur, Malaysia, 2013.
    [57] A. J. Ijspeert, J. Nakanishi and S. Schaal, “Movement imitation with nonlinear dynamical systems in humanoid robots,” Proceedings 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 2002.
    [58] H. Tanie, K. Yamane and Y. Nakamura, “High Marker Density Motion Capture by Retroreflective Mesh Suit,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005.
    [59] P. Azad, A. Ude, T. Asfour and R. Dillmann, “Stereo-based Markerless Human Motion Capture for Humanoid Robot Systems,” Proceedings 2007 IEEE International Conference on Robotics and Automation, Roma, 2007.
    [60] N. Nikolakis, V. Maratos, and S. Makris, “A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace,” Robotics and Computer-Integrated Manufacturing, vol. 56, pp. 233-243,2019.
    [61] R. Girdhar, G. Gkioxari, L. Torresani, M. Paluri, and D. Tran, “Detect-and-Track: Efficient Pose Estimation in Videos,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 350-359, 2018.
    [62] K. Ashton, “That ‘internet of things’ thing,” RFID Journal, vol. 22, no. 7, pp. 97-114, 2009.
    [63] C. Tseng and F. J. Lin, “Extending scalability of IoT/M2M platforms with Fog computing,” 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, Singapore, 2018.
    [64] N. Nikolov, “Research of the Communication Protocols between the IoT Embedded System and the Cloud Structure,” 2018 IEEE XXVII International Scientific Conference Electronics - ET, Sozopol, Bulgaria 2018.
    [65] T. Yokotani and Y. Sasaki, “Transfer protocols of tiny data blocks in IoT and their performance evaluation,” 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Reston, VA, USA, 2016.
    [66] D. S. Nair and P. Supriya, “Comparison of Temporal Difference Learning Algorithm and Dijkstra's Algorithm for Robotic Path Planning,” 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India , 2018.
    [67] A. Bozyiğit, G. Alankuş and E. Nasiboğlu, “Public transport route planning: Modified dijkstra's algorithm,” 2017 International Conference on Computer Science and Engineering (UBMK), Antalya, Turkey, 2017.
    [68] MQTT 傳輸示意圖 https://www.opc-router.com/what-is-mqtt/

    下載圖示 校內:2024-02-01公開
    校外:2024-02-01公開
    QR CODE