簡易檢索 / 詳目顯示

研究生: 高梓峰
Kao, Tze-Feng
論文名稱: 連續小波轉換法於模態參數識別之應用
Modal-Parameter Identification Using Continuous Wavelet Transform
指導教授: 江達雲
Chiang, Dar-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 64
中文關鍵詞: 連續小波轉換模態參數識別定常
外文關鍵詞: Continuous Wavelet Transform, Modal-Parameter Identification, stationary
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討連續小波轉換於模態參數識別之應用。分別對系統自由響應、簡諧響應與定常響應轉化為近似自由響應的訊號經小波轉換獲得之時頻解析,然後利用系統模態參數表現於時頻解析之峰脊特徵中,進而識別出各模態的模態參數,即自然頻率,阻尼比及振形。由於各模態的參數是從時頻譜中的峰脊識別而得,而相近模態頻率在時頻解析圖中又容易互相干擾而影響識別結果。本文針對連續小波轉換於參數識別的相關理論與技術提出一套系統化的識別流程,並對相近頻率所造成的識別問題提出解決方法。經數值模擬結果顯示,系統的自由響應、簡諧響應與近似自由響應在本文所提之識別法下可得到良好的模態參數識別結果。

    This thesis presents a technique for modal-parameter identification based on continuous wavelet transformation. Through adequate processing methods, the stationary ambient vibration data is transformed approximately to the free vibration of the analyzed system. The modal-parameter of the system (including natural frequencies, damping ratios and mode shapes) are then identified from the ridges in the time-frequency spectrum obtained by the wavelet analysis. As the modal parameters are identified from the ridges, and the close modes will interfere with each other and affect the result of modal identification. The modal-parameter identification based on the continuous wavelet transformation of proposed systematic method and close modes caused by the identification of problems for solutions. Through numerical simulations, applicability and effectiveness of the proposed wavelet-based method of modal parameter identification from vibration data is demonstrated.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 .V 圖目錄 VI 第一章 緒論 1 1-1 引言 1 1-2 模態分析與系統識別 2 1-3 文獻回顧 4 1-4 研究目的 9 1-5 論文架構 10 第二章 線性系統受環境振動之相關理論 12 2-1 引言 12 2-2 隨機過程簡介 12 2-3 環境振動的概念與相關分析 13 2-4 定常環境響應處理方法 15 第三章 小波轉換理論與系統識別之應用 20 3-1 引言 20 3-2小波轉換之理論 21 3-3應用小波轉換於系統參數識別 26 第四章 數值模擬 32 4-1 引言 32 4-2 自由響應之模態參數識別 32 4-3 簡諧響應之模態參數識別 34 4-4 環境振動響應之模態參數識別 35 第五章 結論 39 參考文獻 41 表目錄 表4-1 三自由度結構自由響應之自然頻率與阻尼比識別結果 44 表4-2 三自由度結構自由響應之模態振形識別結果 44 表4-3 三自由度結構簡諧響應之自然頻率與阻尼比識別結果 45 表4-4 三自由度結構簡諧響應之模態振形識別結果 45 表4-5 三自由度結構近似自由衰減響應 之自然頻率與阻尼比識別結果 46 表4-6 三自由度結構近似自由衰減響應之模態振形識別結果 46 表4-7 三自由度結構近似自由衰減響應經亞伯拉罕時域法 之自然頻率與阻尼比識別結果 47 圖目錄 圖2-1 隨機過程 之示意圖,每個 表示 過程整體的一個樣本函數 48 圖2-2 隨機遞減訊號示意圖 48 圖2-3 隨機遞減法截取訊號示意圖 49 圖3-1 連續小波轉換之時頻解析示意圖 49 圖4-1 三自由度結構系統圖 50 圖4-2 各自由度自由衰減響應圖 50 圖4-3 各自由響應訊號連續小波轉換圖 (中心頻率 採用5rad/sec) 51 圖4-4 各自由響應訊號連續小波轉換圖 (中心頻率 採用15rad/sec) 52 圖4-5 自由響應於固定尺度連續小波轉換及識別圖 53 圖4-6 自由響應下各模態振形圖 54 圖4-7 各自由度簡諧外力響應圖 55 圖4-8 各自由度簡諧響應連續小波轉換圖 (中心頻率 採用15rad/sec) 56 圖4-9 簡諧響應於固定尺度連續小波轉換及識別圖 57 圖4-10 簡諧響應下各模態振形圖 58 圖4-11-a 定常白訊激勵樣本函數圖 59 圖4-11-b 定常白訊功率頻譜密度函數圖 59 圖4-12 各自由度受定常白訊激勵響應圖 60 圖4-13 位移響應經RDD處理圖 61 圖4-14 各自由度近似自由響應連續小波轉換圖 ( =15rad/sec) 62 圖4-15 近似自由響應於固定尺度連續小波轉換及識別圖 63 圖4-16 近似自由衰減訊號各模態振形圖 64

    [1] Bedewi, N.E., “The Mathematical Foundation of the Auto and Cross-random Decrement Techniques and the Development of a System Identification Technique for the Detection of Structural Deterioration”, Ph. D Thesis, University of Maryland College Park, 1986.
    [2] Carmona, R., Hwang, W. L., Torresani, B., “Characterization of Signals by the Ridges of Their Wavelet Transform”, IEEE Transactions on Signal Processing, Vol. 45, pp. 2586-2589, 1997.
    [3] Chui C. K., An Introduction to Wavelets, Academic Press, Inc, 1992.
    [4] Code, H. A. Jr., “Methods and apparatus for measuring the damping
    characteristics of a structures by the random decrement technique”, United States Patent No. 3, 620, 069, 1971.
    [5] Daubechies, “Orthonormal bases of compactly supported wavelets”, Communications on Pure and Applied Mathematics, Vol. 41, pp.909-996, 1988.
    [6] Delprat, N., Escudie, B., Guillemain, P., Ronland-Martinet, R. K., Ph. Tchamichian, Torresani, B., “Asymptotic Wavelet and Gabor Analysis: Extraction of Instantaneous Frequencies”, IEEE Trans. on IT, Vol. 38, pp. 644-664, 1992.
    [7] Mallat S., “A Wavelet Tour of Signal Processing”, Academic Press, New York, 1999.
    [8] Lardies, J., Gouttebroze, S., “Identification of Modal Parameters Using the Wavelet Transform”, International Journal of Mechanical Sciences, Vol. 44, pp. 2263-2283, 2002.

    [9] Mallat S., “A theory for multiresolution signal decomposition: The wavelet representation”, IEEE Trans. On PAMI, Vol.11, pp.674-693, 1989.
    [10] Mallat S., “A Wavelet Tour of Signal Processing”, Academic Press, New York, 1999.
    [11] Morlet, J., “Sampling Theory and Wave Propagation”, Proceedings of the 51st Annual Meeting Soc, 1980.
    [12] Pandit, S. M. and Wu, S. M., Time Series and System Analysis with Applications, John Wiley & Sons, Inc., New York, 1983.
    [13] Ruzzene, M., Fasana, A., Garibaldi, L., Piombo, B., ‘‘Natural Frequencies and Dampings Identification Using Wavelet Transform: Application to Real Data’’, Mechanical Systems and Signal Processing, pp. 207-218, 1997.
    [14] Shinozuka, M., “Simulation of Multivariate and Multidimensional Random Processes”, Journal of the Acoustical Society of America, Vol. 49, No. 1, pp. 357-367, 1971.
    [15] Slavic, J., Simonovski, I., Boltezar, M., ‘‘Damping Identification Using A Continuous Wavelet Transform: Application to Real Data’’, Journal of Sound and Vibration, Vol. 262, pp. 291-307, 2003.
    [16] Staszewski, w. J., “Identification of Damping in MDOF Systems Using Time-Scale Decomposition ”, Journal of Sound and Vibration, Vol. 203, pp. 283-305, 1997.
    [17] Thien-Phu Le and Pierre Argoul, “Continuous wavelet transform for modal identification using free decay response”, Journal of Sound and Vibration, Vol. 277, pp. 73-100.
    [18] Vandiver, J. K., Dunwoody, A. B., Campbell, R. B. and Cook, M. F., “A Mathematical Basis for the Random Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Apr., Vol. 104, 1982.
    [19] 林章生,相關函數法於非定常環境振動之模態參數識別研究,碩士論 文,國立成功大學航空太空工程研究所,2004.
    [20] 黃駿凱,應用小波轉換於模態參數識別之研究,碩士論文,國立成功大學航空太空工程研究所,2006.

    下載圖示 校內:立即公開
    校外:2007-07-10公開
    QR CODE