簡易檢索 / 詳目顯示

研究生: 張瑀娜
Chang, Yu-Na
論文名稱: 具缺陷的金屬有機骨架應用於放大多巴胺電化學感測訊號
Defective Metal–Organic Framework Nanocrystals as Signal Amplifiers for Electrochemical Dopamine Sensing
指導教授: 龔仲偉
Kung, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 137
中文關鍵詞: 缺陷工程多巴胺感測電化學感測器鋯基金屬有機骨架氧化石墨烯
外文關鍵詞: defect engineering, dopamine detection, electrochemical sensor, graphene oxide, zirconium-based MOF
相關次數: 點閱:48下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬有機骨架(Metal-organic frameworks, MOFs)是由金屬節點以及有機小分子連接器所組成的奈米孔洞材料,其具有高比表面積、結構多變性,以及高孔洞性的結構。其中,鋯基金屬有機骨架(Zirconium metal-organic frameworks, Zr-MOF)具有出色的水穩定性,使其能夠應用於需在水相中進行的反應。在過往的報導中,將鋯基金屬有機骨架與導電材料或氧化還原活性位點結合,可應用於電化學多巴胺(DA)感測,並且得到良好的靈敏度及線性範圍。然而,在文獻當中發現,未經修飾的Zr-MOF薄膜相較於裸電極,其DA氧化的法拉第電流訊號可以被略為放大。由於大多數未與導電材料或是活性位點結合的Zr-MOF在DA的氧化電位下是電絕緣體,因此電荷傳導不應該在Zr-MOF薄膜內發生。再者,因為此系統中唯一具有氧化還原活性的只有多巴胺,因此氧化電流的放大效應應該歸因於DA本身的氧化所帶來的電流訊號,此處提出一個假設,多巴胺能夠吸附於Zr-MOF的骨架內,在氧化還原的同時進行電荷傳遞。然而,先前尚未研究過這種現象的起源。
    為了瞭解多巴胺在骨架的吸附行為,以及如何造成電流放大效應,本研究中使用具水穩定性的Zr-MOF,UiO-66,透過改變合成溫度來調整UiO-66中的缺陷位置數量,以便研究DA與Zr-MOF中位於缺陷位置的末端官能基-OH/-OH2之間的相互作用。研究結果表明,DA的氧化電流密度隨著Zr-MOF中缺陷位點數量的增加而增加,並且透過實驗證明DA被吸附在UiO-66中,從而產生基於氧化還原跳躍的感測電流。進一步在能夠選擇性感測DA的電化學活性材料(例如氧化石墨烯(Graphene, GO))薄膜上沉積MOF這種多孔的訊號放大器,可以製備具有放大訊號並對常見干擾物具有良好選擇性的電化學DA 感測器。

    In this study, a water-stable zirconium-based metal–organic framework (Zr-MOF), UiO-66, is synthesized with a tunable degree of missing-linker defects, and the corresponding crystallinity, morphology, porosity, and degree of defects are characterized. Although all the UiO-66 synthesized here is electrically insulating and electrochemically inactive, the thin film of defective UiO-66 deposited on the electrode surface can significantly amplify the electrochemical sensing signal for DA. The effect of the degree of defects on the resulting sensing response for DA is examined, and the origin of such a signal amplification effect, which is relevant to the hopping-based electrochemical process of the irreversibly adsorbed DA in the defective MOF, is investigated. By serving the defective UiO-66 as a signal amplifier casted on top of another electrically conductive active material capable for selective DA detection, the modified electrode for sensing DA with enhanced performances can be developed. As a proof-of-concept demonstration, the defective UiO-66 thin film was coated on the graphene oxide (GO) modified electrode. With the use of such a bi-layer thin film for DA sensing, a much higher sensitivity (6.4-fold), a much smaller limit of detection, and a better selectivity toward DA against AA and UA can be achieved compared to those of the GO thin film. Experimental results here shed light on the use of such porous MOF coatings to effectively enhance the sensing performances of other developed electrochemical sensing systems for DA.

    中文摘要 I Extend Abstract III 致謝 XI 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1-1 電化學介紹 1 1-1-1 電化學原理 1 1-1-2 修飾電極與相關電化學應用 5 1-2 電化學感測 9 1-2-1 電化學感測簡介 9 1-2-2 電化學感測方法 12 1-2-3 電化學感測多巴胺 17 1-3 金屬有機骨架 22 1-3-1 金屬有機骨架介紹 22 1-3-2 金屬有機骨架中的電荷傳輸原理 25 1-3-3 金屬有機骨架於電化學感測多巴胺之應用 27 1-4 研究動機 34 第二章 實驗方法與儀器介紹 40 2-1 實驗藥品與儀器設備介紹 40 2-1-1 實驗藥品 40 2-1-2 實驗儀器 41 2-2 實驗方法 42 2-2-1 具有不同缺陷程度之金屬有機骨架UiO-66之合成 42 2-2-2 修飾電極製備 43 2-2-3 材料鑑定之儀器使用 45 2-2-4 電化學測試 46 2-2-5 電化學前處理和NMR樣品製備 47 2-2-6 滴定實驗 47 第三章 結果與討論 49 3-1 材料鑑定 49 3-1-1 掃描式電子顯微鏡圖(Scanning electron microscopic images, SEM images)及穿透式電子顯微鏡圖(Transmission electron microscope images, TEM images) 49 3-1-2 X射線繞射圖譜(X-ray diffraction patterns, XRD patterns) 53 3-1-3 氮氣吸脫附曲線以及孔徑分布(Nitrogen adsorption-desorption isotherm and density functional theory (DFT) pore size distribution) 54 3-1-4 滴定實驗(Titration experiments) 56 3-2 電化學結果分析 61 3-2-1 缺陷UiO-66薄膜修飾電極的多巴胺電化學感測表現 61 3-2-2 多巴胺在UiO-66薄膜內的吸附行為以及電化學行為 64 3-2-3 雙層電化學多巴胺感測器 69 第四章 結論 85 第五章 未來展望與建議 88 參考文獻 89 附錄:個人簡歷表 109

    1. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: a review. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22, 10, 1027-1036, 2010.
    2. R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica acta, 45, 15-16, 2483-2498, 2000.
    3. Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, and T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355, 6321, eaad4998, 2017.
    4. M. Sajid, N. Baig, and K. Alhooshani, Chemically modified electrodes for electrochemical detection of dopamine: challenges and opportunities. TrAC Trends in Analytical Chemistry, 118, 368-385, 2019.
    5. Z. Li, Z. Xu, H. Wang, J. Ding, B. Zahiri, C. M. Holt, X. Tan, and D. Mitlin, Colossal pseudocapacitance in a high functionality–high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energy & Environmental Science, 7, 5, 1708-1718, 2014.
    6. F. H. Wu, G. C. Zhao, X. W. Wei, and Z. S. Yang, Electrocatalysis of tryptophan at multi-walled carbon nanotube modified electrode. Microchimica Acta, 144, 243-247, 2004.
    7. R. W. Murray, A. G. Ewing, and R. A. Durst, Chemically modified electrodes. Electroanalytical chemistry, 13, 379-390, 1987.
    8. C. H. Chuang, J. H. Li, Y. C. Chen, Y. S. Wang, and C. W. Kung, Redox-hopping and electrochemical behaviors of metal–organic framework thin films fabricated by various approaches. The Journal of Physical Chemistry C, 124, 38, 20854-20863, 2020.
    9. C. H. Shen, Y. N. Chang, Y. L. Chen, and C. W. Kung, Sulfonate-grafted metal–organic framework─ a porous alternative to nafion for electrochemical sensors. ACS Materials Letters, 5, 7, 1938-1943, 2023.
    10. Y. H. Chen, C. H. Shen, T. E. Chang, Y. C. Wang, Y. L. Chen, and C. W. Kung, Molybdenum-functionalized metal–organic framework crystals interconnected by carbon nanotubes as negative electrodes for supercapacitors. MRS Energy & Sustainability, 9, 2, 332-341, 2022.
    11. M. D. Tsai, Y. C. Wang, Y. L. Chen, Y. H. Chen, C. H. Shen, and C. W. Kung, Selectively confined poly (3, 4-ethylenedioxythiophene) in the nanopores of a metal–organic framework for electrochemical nitrite detection with reduced limit of detection. ACS Applied Nano Materials, 5, 9, 12980-12990, 2022.
    12. Y. C. Wang, J. H. Yen, C. W. Huang, T. E. Chang, Y. L. Chen, Y. H. Chen, C. Y. Lin, and C. W. Kung, Metal–organic framework-derived electrocatalysts competent for the conversion of acrylonitrile to adiponitrile. ACS Applied Materials & Interfaces, 14, 31, 35534-35544, 2022.
    13. E. Bakker and M. Telting Diaz, Electrochemical sensors. Analytical Chemistry, 74, 12, 2781-2800, 2002.
    14. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nature Materials, 7, 11, 845-854, 2008.
    15. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 414, 6861, 359-367, 2001.
    16. G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41, 2, 797-828, 2012.
    17. J. Lipkowski and P. N. Ross, Electrocatalysis. Wiley-VCH, New York, 1998.
    18. X. Tian, X. F. Lu, B. Y. Xia, and X. W. D. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule, 4, 1, 45-68, 2020.
    19. D. Strmcnik, M. Escudero Escribano, K. Kodama, V. R. Stamenkovic, A. Cuesta, and N. M. Marković, Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. Nature chemistry, 2, 10, 880-885, 2010.
    20. W. Yang, J. Li, L. Lan, Q. Fu, L. Zhang, X. Zhu, and Q. Liao, Poison tolerance of non-precious catalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 43, 17, 8474-8479, 2018.
    21. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J. P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, and P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science, 4, 1, 114-130, 2011.
    22. D. Zhang, R. Ding, C. Zhang, Y. Tang, T. Yuan, Q. Dong, L. Bi, S. Shi, and Y. He, Efficient synthesis of Fe/N-doped carbon nanotube as highly active catalysts for oxygen reduction reaction in alkaline media. Langmuir, 38, 30, 9310-9320, 2022.
    23. Z. Xie, Q. Li, X. Peng, X. Wang, L. Guo, X. Zhang, Z. Lu, X. Yang, X. Yu, and L. Li, Promoting interfacial charge transfer by B/N co-doping enables efficient ORR catalysis of carbon-encapsulated Fe2N. Journal of Materials Chemistry A, 10, 8, 4191-4199, 2022.
    24. F. D. Tu, Z. Y. Wu, P. Guo, L. X. Shen, Z. Y. Zhang, Y. K. Dai, M. Ma, J. Liu, B. Xu, and Y. L. Zhang, Fe-NC catalysts decorated with oxygen vacancies-rich CeOx to increase oxygen reduction performance for Zn-air batteries. Journal of Colloid and Interface Science, 637, 10-19, 2023.
    25. J. Qi, W. Zhang, and R. Cao, Porous materials as highly efficient electrocatalysts for the oxygen evolution reaction. ChemCatChem, 10, 6, 1206-1220, 2018.
    26. M. Shi and F. C. Anson, Rapid oxidation of Ru(NH3)63+ by Os(bpy)33+ within Nafion coatings on electrodes. Langmuir, 12, 8, 2068-2075, 1996.
    27. P. Bertoncello, I. Ciani, F. Li, and P. R. Unwin, Measurement of apparent diffusion coefficients within ultrathin Nafion Langmuir−Schaefer films: comparison of a novel scanning electrochemical microscopy approach with cyclic voltammetry. Langmuir, 22, 25, 10380-10388, 2006.
    28. H. S. Chan, L. M. Gan, H. Chi, and C. S. Toh, A renewable glucose sensor fabricated from microemulsion polymerization of thiophene in a flow cell with application in a high-performance liquid chromatography system. Journal of Electroanalytical Chemistry, 379, 1-2, 293-300, 1994.
    29. J. Fonollosa, I. Rodríguez Luján, M. Trincavelli, A. Vergara, and R. Huerta, Chemical discrimination in turbulent gas mixtures with mox sensors validated by gas chromatography-mass spectrometry. Sensors, 14, 10, 19336-19353, 2014.
    30. J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski, and D. J. Birch, Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20, 12, 2555-2565, 2005.
    31. J. Wang, Electrochemical glucose biosensors. Chemical Reviews, 108, 2, 814-825, 2008.
    32. A. M. Grumezescu, Nanoparticles in pharmacotherapy. William Andrew, 2019.
    33. S. G. Weber and J. T. Long, Detection limits and selectivity in electrochemical detectors. Analytical Chemistry, 60, 15, 903A-913A, 1988.
    34. A. Shrivastava and V. B. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci, 2, 1, 21-25, 2011.
    35. L. Manjakkal, W. Dang, N. Yogeswaran, and R. Dahiya, Textile-based potentiometric electrochemical pH sensor for wearable applications. Biosensors, 9, 1, 14, 2019.
    36. Y. C. Wang, Y. C. Chen, W. S. Chuang, J. H. Li, Y. S. Wang, C. H. Chuang, C. Y. Chen, and C. W. Kung, Pore-confined silver nanoparticles in a porphyrinic metal–organic framework for electrochemical nitrite detection. ACS Applied Nano Materials, 3, 9, 9440-9448, 2020.
    37. C. W. Kung, T. H. Chang, L. Y. Chou, J. T. Hupp, O. K. Farha, and K. C. Ho, Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 58, 51-56, 2015.
    38. A. Bratov, N. Abramova, and A. Ipatov, Recent trends in potentiometric sensor arrays—a review. Analytica Chimica Acta, 678, 2, 149-159, 2010.
    39. J. Bobacka, A. Ivaska, and A. Lewenstam, Potentiometric ion sensors. Chemical Reviews, 108, 2, 329-351, 2008.
    40. J. Ross, J. Riseman, and J. Krueger, Potentiometric gas sensing electrodes. International Symposium on Selective Ion-Sensitive Electrodes, 473-487, 1973.
    41. W. Liu, Y. Ma, G. Sun, S. Wang, J. Deng, and H. Wei, Molecularly imprinted polymers on graphene oxide surface for EIS sensing of testosterone. Biosensors and Bioelectronics, 92, 305-312, 2017.
    42. R. A. Dorledo de Faria, H. Iden, L. G. D. Heneine, T. Matencio, and Y. Messaddeq, Non-enzymatic impedimetric sensor based on 3-aminophenylboronic acid functionalized screen-printed carbon electrode for highly sensitive glucose detection. Sensors, 19, 7, 1686, 2019.
    43. T. P. Nguy, T. Van Phi, D. T. Tram, K. Eersels, P. Wagner, and T. T. Lien, Development of an impedimetric sensor for the label-free detection of the amino acid sarcosine with molecularly imprinted polymer receptors. Sensors and Actuators B: Chemical, 246, 461-470, 2017.
    44. M. A. Ali, H. Jiang, N. K. Mahal, R. J. Weber, R. Kumar, M. J. Castellano, and L. Dong, Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sensors and Actuators B: Chemical, 239, 1289-1299, 2017.
    45. J. Luo, S. Jiang, H. Zhang, J. Jiang, and X. Liu, A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Analytica Chimica Acta, 709, 47-53, 2012.
    46. M. S. Hsu, Y. L. Chen, C. Y. Lee, and H. T. Chiu, Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Applied Materials & Interfaces, 4, 10, 5570-5575, 2012.
    47. K. C. Berridge, The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology, 191, 391-431, 2007.
    48. J. Jankovic, Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79, 4, 368-376, 2008.
    49. C. Cepeda, K. P. Murphy, M. Parent, and M. S. Levine, The role of dopamine in Huntington's disease. Progress in Brain Research, 211, 235-254, 2014.
    50. W. F. Young, Adrenal medulla, catecholamines, and pheochromocytoma. in Goldman's Cecil Medicine: Twenty Fourth Edition. Elsevier Inc., 1470-1475, 2011.
    51. K. Jackowska and P. Krysinski, New trends in the electrochemical sensing of dopamine. Analytical and Bioanalytical Chemistry, 405, 3753-3771, 2013.
    52. N. G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S. S. Dhesi, and H. Marchetto, Catalyst‐free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Advanced Functional Materials, 18, 21, 3506-3514, 2008.
    53. Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 1, 125-131, 2012.
    54. R. Klingler and J. Kochi, Electron-transfer kinetics from cyclic voltammetry. Quantitative description of electrochemical reversibility. The Journal of Physical Chemistry, 85, 12, 1731-1741, 1981.
    55. S. R. Ahrenholtz, C. C. Epley, and A. J. Morris, Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. Journal of the American Chemical Society, 136, 6, 2464-2472, 2014.
    56. D. N. Blauch and J. M. Saveant, Dynamics of electron hopping in assemblies of redox centers. Percolation and diffusion. Journal of the American Chemical Society, 114, 9, 3323-3332, 1992.
    57. D. A. Buttry and F. C. Anson, Electron hopping vs. molecular diffusion as charge transfer mechanisms in redox polymer films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 130, 333-338, 1981.
    58. H. L. Zou, B. L. Li, H. Q. Luo, and N. B. Li, A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 207, 535-541, 2015.
    59. H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, The chemistry and applications of metal-organic frameworks. Science, 341, 6149, 1230444, 2013.
    60. G. Férey, Hybrid porous solids: past, present, future. Chemical Society Reviews, 37, 1, 191-214, 2008.
    61. A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, and O. K. Farha, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials, 1, 3, 1-15, 2016.
    62. I. M. Hönicke, I. Senkovska, V. Bon, I. A. Baburin, N. Bönisch, S. Raschke, J. D. Evans, and S. Kaskel, Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angewandte Chemie International Edition, 57, 42, 13780-13783, 2018.
    63. S. Kitagawa, R. Kitaura, and S. i. Noro, Functional porous coordination polymers. Angewandte Chemie International Edition, 43, 18, 2334-2375, 2004.
    64. S. M. Cohen, Postsynthetic methods for the functionalization of metal–organic frameworks. Chemical Reviews, 112, 2, 970-1000, 2012.
    65. J. D. Evans, C. J. Sumby, and C. J. Doonan, Post-synthetic metalation of metal–organic frameworks. Chemical Society Reviews, 43, 16, 5933-5951, 2014.
    66. C. W. Kung, T. H. Chang, L. Y. Chou, J. T. Hupp, O. K. Farha, and K. C. Ho, Post metalation of solvothermally grown electroactive porphyrin metal–organic framework thin films. Chemical Communications, 51, 12, 2414-2417, 2015.
    67. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp, Metal–organic framework materials as catalysts. Chemical Society Reviews, 38, 5, 1450-1459, 2009.
    68. Y. Cui, Y. Yue, G. Qian, and B. Chen, Luminescent functional metal–organic frameworks. Chemical Reviews, 112, 2, 1126-1162, 2012.
    69. Y. Sun, L. Wang, W. A. Amer, H. Yu, J. Ji, L. Huang, J. Shan, and R. Tong, Hydrogen storage in metal-organic frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 23, 270-285, 2013.
    70. M. Ding, R. W. Flaig, H. L. Jiang, and O. M. Yaghi, Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48, 10, 2783-2828, 2019.
    71. J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal–organic frameworks. Chemical Society Reviews, 38, 5, 1477-1504, 2009.
    72. R. B. Lin, S. Xiang, H. Xing, W. Zhou, and B. Chen, Exploration of porous metal–organic frameworks for gas separation and purification. Coordination Chemistry Reviews, 378, 87-103, 2019.
    73. Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Metal organic frameworks for energy storage and conversion. Energy Storage Materials, 2, 35-62, 2016.
    74. W. Xia, A. Mahmood, R. Zou, and Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 8, 7, 1837-1866, 2015.
    75. H. D. Lawson, S. P. Walton, and C. Chan, Metal–organic frameworks for drug delivery: a design perspective. ACS Applied Materials & Interfaces, 13, 6, 7004-7020, 2021.
    76. P. Horcajada, C. Serre, M. Vallet‐Regí, M. Sebban, F. Taulelle, and G. Férey, Metal–organic frameworks as efficient materials for drug delivery. Angewandte Chemie International Edition, 45, 36, 5974-5978, 2006.
    77. N. C. Burtch, H. Jasuja, and K. S. Walton, Water stability and adsorption in metal–organic frameworks. Chemical Reviews, 114, 20, 10575-10612, 2014.
    78. S. Yuan, J. S. Qin, C. T. Lollar, and H. C. Zhou, Stable metal–organic frameworks with group 4 metals: current status and trends. ACS Central Science, 4, 4, 440-450, 2018.
    79. Y. Bai, Y. Dou, L. H. Xie, W. Rutledge, J. R. Li, and H. C. Zhou, Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 45, 8, 2327-2367, 2016.
    80. C. H. Hendon, D. Tiana, and A. Walsh, Conductive metal–organic frameworks and networks: fact or fantasy?, Physical Chemistry Chemical Physics, 14, 38, 13120-13132, 2012.
    81. L. Sun, M. G. Campbell, and M. Dincă, Electrically conductive porous metal–organic frameworks. Angewandte Chemie International Edition, 55, 11, 3566-3579, 2016.
    82. A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, and H. P. Yoon, Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 343, 6166, 66-69, 2014.
    83. S. Lin, P. M. Usov, and A. J. Morris, The role of redox hopping in metal–organic framework electrocatalysis. Chemical Communications, 54, 51, 6965-6974, 2018.
    84. P. Stallinga, Electronic transport in organic materials: Comparison of band theory with percolation/(variable range) hopping theory. Advanced Materials, 23, 30, 3356-3362, 2011.
    85. D. Sheberla, L. Sun, M. A. Blood Forsythe, S. l. Er, C. R. Wade, C. K. Brozek, A. Aspuru Guzik, and M. Dincă, High electrical conductivity in Ni3(2, 3, 6, 7, 10, 11-hexaiminotriphenylene)2, a semiconducting metal–organic graphene analogue. Journal of the American Chemical Society, 136, 25, 8859-8862, 2014.
    86. D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao Horn, and M. Dincă, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials, 16, 2, 220-224, 2017.
    87. R. J. Marshall and R. S. Forgan, Postsynthetic modification of zirconium metal‐organic frameworks. European Journal of Inorganic Chemistry, 2016, 27, 4310-4331, 2016.
    88. J. H. Li, Y. S. Wang, Y. C. Chen, and C. W. Kung, Metal–organic frameworks toward electrocatalytic applications. Applied Sciences, 9, 12, 2427, 2019.
    89. S. Goswami, I. Hod, J. D. Duan, C. W. Kung, M. Rimoldi, C. D. Malliakas, R. H. Palmer, O. K. Farha, and J. T. Hupp, Anisotropic redox conductivity within a metal–organic framework material. Journal of the American Chemical Society, 141, 44, 17696-17702, 2019.
    90. C. H. Shen, Y. H. Chen, Y. C. Wang, T. E. Chang, Y. L. Chen, and C. W. Kung, Probing the electronic and ionic transport in topologically distinct redox-active metal–organic frameworks in aqueous electrolytes. Physical Chemistry Chemical Physics, 24, 17, 9855-9865, 2022.
    91. M. Cai, Q. Loague, and A. J. Morris, Design rules for efficient charge transfer in metal–organic framework films: the pore size effect. The Journal of Physical Chemistry Letters, 11, 3, 702-709, 2020.
    92. S. Lu, M. Hummel, K. Chen, Y. Zhou, S. Kang, and Z. Gu, Synthesis of Au@ ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochemistry Communications, 114, 106715, 2020.
    93. A. Paul, I. K. Banga, S. Muthukumar, and S. Prasad, Engineering the ZIF-8 pore for electrochemical sensor applications─ a mini review. ACS Omega, 7, 31, 26993-27003, 2022.
    94. H. Zhang, M. Zhao, and Y. Lin, Stability of ZIF-8 in water under ambient conditions. Microporous and Mesoporous Materials, 279, 201-210, 2019.
    95. T. Y. Huang, C. W. Kung, Y. T. Liao, S. Y. Kao, M. Cheng, T. H. Chang, J. Henzie, H. R. Alamri, Z. A. Alothman, and Y. Yamauchi, Enhanced charge collection in MOF‐525–PEDOT nanotube composites enable highly sensitive biosensing. Advanced Science, 4, 11, 1700261, 2017.
    96. W. H. Ho, T. Y. Chen, K. i. Otake, Y. C. Chen, Y. S. Wang, J. H. Li, H. Y. Chen, and C. W. Kung, Polyoxometalate adsorbed in a metal–organic framework for electrocatalytic dopamine oxidation. Chemical Communications, 56, 79, 11763-11766, 2020.
    97. M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, and K. P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22, 24, 6632-6640, 2010.
    98. C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H. B. Bürgi, and O. M. Yaghi, Definitive molecular level characterization of defects in UiO‐66 crystals. Angewandte Chemie International Edition, 54, 38, 11162-11167, 2015.
    99. H. Ren, D. D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, and V. V. Tsukruk, Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS Applied Materials & Interfaces, 6, 4, 2459-2470, 2014.
    100. M. M. Rahman, D. Liu, N. S. Lopa, J. B. Baek, C. H. Nam, and J. J. Lee, Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. Journal of Electroanalytical Chemistry, 898, 115628, 2021.
    101. G. C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K. P. Lillerud, Defect engineering: tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chemistry of Materials, 28, 11, 3749-3761, 2016.
    102. M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp, and O. K. Farha, Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 29, 3, 1357-1361, 2017.
    103. T. E. Chang, C. H. Chuang, Y. H. Chen, Y. C. Wang, Y. J. Gu, and C. W. Kung, Iridium‐functionalized metal‐organic framework nanocrystals interconnected by carbon nanotubes competent for electrocatalytic water oxidation. ChemCatChem, 14, 15, e202200199, 2022.
    104. W. Xia, J. Zhu, W. Guo, L. An, D. Xia, and R. Zou, Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. Journal of Materials Chemistry A, 2, 30, 11606-11613, 2014.
    105. Y. S. Wang, Y. C. Chen, J. H. Li, and C. W. Kung, Toward metal–organic‐framework‐based supercapacitors: room‐temperature synthesis of electrically conducting MOF‐based nanocomposites decorated with redox‐active manganese. European Journal of Inorganic Chemistry, 2019, 26, 3036-3044, 2019.
    106. H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 135, 28, 10525-10532, 2013.
    107. R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp, and O. K. Farha, Evaluation of Brønsted acidity and proton topology in Zr-and Hf-based metal–organic frameworks using potentiometric acid–base titration. Journal of Materials Chemistry A, 4, 4, 1479-1485, 2016.
    108. L. Jürgen, M. w. s. Radosław, F. Claudiu, T. Rodica, B. Attila, and B. Sebastian, Structure of polydopamine: a never-ending story?, Langmuir, 29, 33, 10539-10548, 2013.
    109. C. Lin, L. Chen, E. E. Tanner, and R. G. Compton, Electroanalytical study of dopamine oxidation on carbon electrodes: from the macro-to the micro-scale. Physical Chemistry Chemical Physics, 20, 1, 148-157, 2018.
    110. R. P. Bacil, L. Chen, S. H. Serrano, and R. G. Compton, Dopamine oxidation at gold electrodes: mechanism and kinetics near neutral pH. Physical Chemistry Chemical Physics, 22, 2, 607-614, 2020.
    111. E. Peltola, S. Sainio, K. B. Holt, T. Palomäki, J. Koskinen, and T. Laurila, Electrochemical fouling of dopamine and recovery of carbon electrodes. Analytical Chemistry, 90, 2, 1408-1416, 2018.
    112. J. Szewczyk, D. Aguilar Ferrer, and E. Coy, Polydopamine films: electrochemical growth and sensing applications. European Polymer Journal, 174, 111346, 2022.
    113. R. Shimoni, W. He, I. Liberman, and I. Hod, Tuning of redox conductivity and electrocatalytic activity in metal–organic framework films via control of defect site density. The Journal of Physical Chemistry C, 123, 9, 5531-5539, 2019.
    114. S. Lin, Y. Pineda‐Galvan, W. A. Maza, C. C. Epley, J. Zhu, M. C. Kessinger, Y. Pushkar, and A. J. Morris, Electrochemical water oxidation by a catalyst‐modified metal–organic framework thin film. ChemSusChem, 10, 3, 514-522, 2017.
    115. A. J. Bard, L. R. Faulkner, and H. S. White, Electrochemical methods: fundamentals and applications. John Wiley & Sons, 2022.
    116. X. Ma, M. Chao, and Z. Wang, Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Analytical Methods, 4, 6, 1687-1692, 2012.
    117. Y. Li, Y. Shen, Y. Zhang, T. Zeng, Q. Wan, G. Lai, and N. Yang, A UiO-66-NH2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Analytica Chimica Acta, 1158, 338419, 2021.
    118. Y. Y. Zheng, C. X. Li, X. T. Ding, Q. Yang, Y. M. Qi, H. M. Zhang, and L. T. Qu, Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chinese Chemical Letters, 28, 7, 1473-1478, 2017.
    119. Y. Bao, Z. Li, H. Wang, N. Li, Q. Pan, J. Li, J. Zhao, R. Yang, and F. Feng, Electrochemical reduction-assisted in situ fabrication of a graphene/Au nanoparticles@ polyoxometalate nanohybrid film: high-performance electrochemical detection for uric acid. Langmuir, 36, 26, 7365-7374, 2020.
    120. Y. T. Chiang, Y. J. Gu, Y. D. Song, Y. C. Wang, and C. W. Kung, Cerium-based metal–organic framework as an electrocatalyst for the reductive detection of dopamine. Electrochemistry Communications, 135, 107206, 2022.
    121. M. Ko, L. Mendecki, A. M. Eagleton, C. G. Durbin, R. M. Stolz, Z. Meng, and K. A. Mirica, Employing conductive metal–organic frameworks for voltammetric detection of neurochemicals. Journal of the American Chemical Society, 142, 27, 11717-11733, 2020.
    122. Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, and H. Kim, Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics, 25, 10, 2366-2369, 2010.
    123. Q. Huang, X. Lin, L. Tong, and Q. X. Tong, Graphene quantum dots/multiwalled carbon nanotubes composite-based electrochemical sensor for detecting dopamine release from living cells. ACS Sustainable Chemistry & Engineering, 8, 3, 1644-1650, 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE