| 研究生: |
蘇敬元 Su, Chin-Yuan |
|---|---|
| 論文名稱: |
考量混合生產及回收料不確定性的整備時間之經濟生產批量模型 EPQ models under hybrid manufacturing/remanufacturing production with setup time uncertainty of recycled materials |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 再製造 、混合生產系統 、整備時間不確定性 、經濟生產批量模型 |
| 外文關鍵詞: | EPQ, Remanufacturing, Hybrid production, Setup time uncertainty |
| 相關次數: | 點閱:83 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球對環保意識的重視日增月益,在企業之間彼此的激烈競爭下,許多企業為了於環保以及降低生產成本之間取得雙贏,採取以回收料進行再製造生產之策略。但由於每批回收料的特性及純度較不一致,因此產品生產前必須針對回收料進行生產的參數配置調整,導致回收料的整備時間具有不確定性。
本研究探討一間企業採取使用原物料製造以及回收料再製造的混合生產系統,以經濟生產批量模型為基礎,建立四種模型,模型一為單純以原物料進行一次製造之經濟生產批量模型,用來後續比較加入以回收料來進行再製造之混合生產模型是否能夠降低單位時間之期望總成本。模型二在不允許缺貨的情況下,先使用原物料進行製造,生產完成後進入純粹消耗時間,並且同時進行回收料的整備,若整備可以及時完成,則立即切換至以回收料進行再製造。模型三則是以模型二為基礎,考慮經過多少時間若未能完成整備則代表此批回收料可能品質不佳,能夠完成整備的機會不大,因此在全新品消耗完之前,加入一個回收料的最長允許整備時間,當整備時間達到此一上限若尚未完成整備,則放棄此批回收料。接著,本研究以模型三做延伸,在考慮在允許缺貨的情況下,建構模型四,其中最長之允許整備時間會設定在全新品消耗完之後,分析各模型間的優劣,求取最佳之經濟生產批量、最長允許整備時間以及單位時間期望總成本的極小化,並且進行敏感度分析,以探討各種模型在參數變動時適用的情況。
最後本研究參考實際公司之生產參數並且在符合研究假設下,求解出各模型之最佳解,得到在大部份的情況下允許缺貨之模型四總成本最低,模型二與模型三所得到之最佳解會相等,而不考慮以回收料再製造生產之模型一總成本則是最高,因此在大部份的情況下,回收料之再製造生產混合生產模型能夠有效的降低成本。另外,透過敏感度分析,我們發現在某些特定的情況下,例如平均整備時間過長、回收料的生產批量、單位整備成本和再製造品的單位持有成本太高時,模型四的成本反而會高過於模型一,此時則不建議採用以回收料進行再製造之混合生產模型。
In order to satisfy demand while achieving cost reduction and environmental friendly manufacturing, many companies began using recycled materials to produce products these days. This research investigates four economic production quantity (EPQ) models that use both raw materials and recycled materials to manufacture/remanufacture goods in the presence of setup time uncertainty of recycled materials. Model 1 is the EPQ model with raw materials, whereas model II uses both raw materials and recycled materials. Model III extends model II by considering the maximum allowable time for setup of recycled materials, and model IV further extends model III by allowing product shortage.
The numerical analysis found that using hybrid manufacturing/remanufacturing production is usually more profitable than solely using raw materials to produce products, and that model IV is likely to be better than model II under different parametric settings.
邱宜溱. (2015). 包裝材料回收再利用之生產管理策略. 國立成功大學工業與資訊管理研究所碩士論文
Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). “A literature review and perspectives in reverse logistics.” Resources, Conservation and Recycling, 97, 76-92.
Cárdenas-Barrón, L. E. (2009). “Economic production quantity with rework process at a single-stage manufacturing system with planned backorders.” Computers & Industrial Engineering, 57(3), 1105-1113.
Castro, J., & González, J. A. (2004). “A nonlinear optimization package for long-term hydrothermal coordination.” European Journal of Operational Research, 154(3), 641-658.
Chiu, S. W., Chou, C. L., & Wu, W. K. (2013). “Optimizing replenishment policy in an EPQ-based inventory model with nonconforming items and breakdown.” Economic Modelling, 35, 330-337.
Chiu, S. W., Wang, S. L., & Chiu, Y. S. P. (2007). “Determining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns.” European Journal of Operational Research, 180(2), 664-676.
Chiu, Y. S. P., Chen, K. K., Cheng, F. T., & Wu, M. F. (2010). “Optimization of the finite production rate model with scrap, rework and stochastic machine breakdown.” Computers & Mathematics with Applications, 59(2), 919-932.
Chung, K. J. (2003). “Approximations to production lot sizing with machine breakdowns.” Computers & Operations Research, 30(10), 1499-1507.
Corum, A., Vayvay, Ö., & Bayraktar, E. (2014). “The impact of remanufacturing on total inventory cost and order variance.” Journal of Cleaner Production, 85, 442-452.
Darwish, M. A. (2008). “EPQ models with varying setup cost.” International Journal of Production Economics, 113(1), 297-306.
Dowlatshahi, S. (2000). “Developing a theory of reverse logistics.” Interfaces, 30(3), 143-155.
El Saadany, A. M., & Jaber, M. Y. (2010). “A production/remanufacturing inventory model with price and quality dependant return rate.” Computers & Industrial Engineering, 58(3), 352-362.
Ferrer, G., & Whybark, D. C. (2000). “From garbage to goods: successful remanufacturing systems and skills.” Business Horizons, 43(6), 55-64.
Flapper, S. D., Gayon, J. P., & Lim, L. L. (2014). “On the optimal control of manufacturing and remanufacturing activities with a single shared server.” European Journal of Operational Research, 234(1), 86-98.
Freimer, M., Thomas, D., & Tyworth, J. (2006). “The value of setup cost reduction and process improvement for the economic production quantity model with defects.” European Journal of Operational Research, 173(1), 241-251.
Guide, V. D. R. (2000). “Production planning and control for remanufacturing: industry practice and research needs.” Journal of Operations Management, 18(4), 467-483.
Harris, F. W. (1913). “How many parts to make at once.” The Magazine of Management, 10(2), 135-136, 152.
Inderfurth, K. (2004). “Optimal policies in hybrid manufacturing/remanufacturing systems with product substitution.” International Journal of Production Economics, 90(3), 325-343.
Jaber, M. Y. (2006). “Lot sizing for an imperfect production process with quality corrective interruptions and improvements, and reduction in setups.” Computers & Industrial Engineering, 51(4), 781-790.
Jaber, M. Y., & El Saadany, A. M. (2011). “An economic production and remanufacturing model with learning effects.” International Journal of Production Economics, 131(1), 115-127.
Jayaraman, V., Guide Jr, V. D. R., & Srivastava, R. (1999). “A closed-loop logistics model for remanufacturing.” Journal of the Operational Research Society, 497-508.
Konstantaras, I., & Skouri, K. (2010). “Lot sizing for a single product recovery system with variable setup numbers.” European Journal of Operational Research, 203(2), 326-335.
Kreng, B. W., & Wu, S. Y. (2000). “Implementing an optimal policy for set-up time reduction in an economic production quantity model.” International Journal of Systems Science, 31(5), 605-612.
Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). “A survey of modeling and control of hybrid systems.” Annual Reviews in Control, 21, 79-92.
Li, X., Li, Y., & Cai, X. (2012). “Quantity decisions in a supply chain with early returns remanufacturing.” International Journal of Production Research, 50(8), 2161-2173.
Lund, R., (1998, June 16 and 17). “Remanufacturing: an American resource.” Paper presented at the meeting of Proceedings of the Fifth International Congress Environmentally Conscious Design and Manufacturing, Rochester Institute of Technology, Rochester, NY, USA.
Mitra, S. (2007). “Revenue management for remanufactured products.” Omega, 35(5), 553-562.
Morgan, S. D., & Gagnon, R. J. (2013). “A systematic literature review of remanufacturing scheduling.” International Journal of Production Research, 51(16), 4853-4879.
Mosterman, P. J., Biswas, G., & Sztipanovits, J. (1998). “A hybrid modeling and verification paradigm for embedded control systems.” Control Engineering Practice, 6(4), 511-521.
Murtagh, B.A., & Saunders, M.A. (1983). MINOS 5.0. User’s Guide, Department of Operations Research, Stanford University, USA.
Omar, M., & Yeo, I. (2014). “A production-repair inventory model with time-varying demand and multiple setups.” International Journal of Production Economics, 155, 398-405.
Pintér, J.D. (2011). LGO—A Model Development and Solver System for Global-Local Nonlinear Optimization. User’s Guide. Pintér Consulting Services, Inc., Canada.
Pintér, J. D., & Horváth, Z. (2013). “Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints.” Journal of Global Optimization, 57(1), 191-215.
Porteus, E. L. (1986). “Optimal lot sizing, process quality improvement and setup cost reduction.” Operations Research, 34(1), 137-144.
Rosenblatt, M. J., & Lee, H. L. (1986). “Economic production cycles with imperfect production processes.” IIE Transactions, 18(1), 48-55.
Sana, S. S. (2010). “An economic production lot size model in an imperfect production system.” European Journal of Operational Research, 201(1), 158-170.
Sana, S. S. (2011). “A production-inventory model of imperfect quality products in a three-layer supply chain.” Decision Support Systems, 50(2), 539-547.
Sarker, B. R., & Coates, E. R. (1997). “Manufacturing setup cost reduction under variable lead times and finite opportunities for investment.” International Journal of Production Economics, 49(3), 237-247.
Savaskan, R. C., & Van Wassenhove, L. N. (2006). “Reverse channel design: the case of competing retailers.” Management Science, 52(1), 1-14.
Taft, E. W. (1918). “The most economical production lot.” Iron Age, 101(18), 1410-1412.
Taleizadeh, A. A., Noori-daryan, M., & Tavakkoli-Moghaddam, R. (2015). “Pricing and ordering decisions in a supply chain with imperfect quality items and inspection under buyback of defective items.” International Journal of Production Research, (ahead-of-print), 1-30.
Tang, O., & Teunter, R. (2006). “Economic lot scheduling problem with returns.” Production and Operations Management, 15(4), 488-497.
Teunter, R. (2004). “Lot-sizing for inventory systems with product recovery.” Computers & Industrial Engineering, 46(3), 431-441.
Wang, J., Zhao, J., & Wang, X. (2011). “Optimum policy in hybrid manufacturing/remanufacturing system.” Computers & Industrial Engineering, 60(3), 411-419.
Wei, J., & Zhao, J. (2015). “Pricing and remanufacturing decisions in two competing supply chains.” International Journal of Production Research, 53(1), 258-278.