| 研究生: |
王譯賢 Wang, Yi-Hsien |
|---|---|
| 論文名稱: |
光分碼多重擷取網路透過引導波長以達成最佳臨限值偵測 Optimum Threshold Detection with a Pilot Wavelength in Optical Code-Division Multiple-Access Network |
| 指導教授: |
黃振發
Huang, Jen-Fa 楊朝欽 Yang, Chao-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 光分碼多重擷取 、二維編碼 、多重擷取干擾 、最佳臨限值 |
| 外文關鍵詞: | Optimum threshold, Multiple-access interference (MAI), Two-dimensional coding, Optical code-division multiple-access (OCDMA) |
| 相關次數: | 點閱:165 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光分碼多重擷取 (Optical Code-Division Multiple-Access, OCDMA) 技術提供彈性與安全性的網路傳輸,使用者可以同時地非同步擷取網路系統,因此適合應用於區域網路的架構下。在早期的一維編碼 (One-Dimensional Code) 系統中,若要將系統可容納的使用者增大,則必須大幅的增加碼的長度。如此一來,非線性效應將會產生,而且也不易於硬體的實現。二維編碼 (Two-Dimensional Code) 的出現則是為了改善一維編碼的缺點,並保有原先在一維編碼上良好的相關特性。
在本篇論文中,我們提出一個新的二維編碼架構,這種編碼是將原本的一維光正交碼 (Optical Orthogonal Codes, OOCs) 摺成二維的形式,我們稱為摺型光正交碼 (Folded OOCs, FOOCs)。此摺型光正交碼系統利用波長與時間兩種維度來傳輸信號。經過分析後證實,摺型光正交碼能保有良好的相關特性,並且有更多的碼能供系統使用。
針對以上的二維編碼系統,我們提出一個新穎且簡易的方法來偵測即時的使用者數量,即在每位使用者的傳輸碼字中都加入一個特定的波長來傳輸。由此,我們在接收端可依據此波長的功率大小來判定即時使用者的數量,進而調整系統的臨限決策值。在此系統中,每個特定的即時使用者數都將會對應到一個最佳臨限決策值,只要即時設定最佳的臨限決策值,便可達到系統的最佳效能。
Optical code-division multiple-access (OCDMA) techniques not only provide a flexible and secure transmission but also allow multiple users access the network asynchronously and simultaneously. Therefore, they are the most suitable solution in local area network (LAN). In early one-dimensional (1-D) coding systems, the code length should be increased rapidly in order to accommodate large active users. Hence, the nonlinear effect will come into existence and the systems are hard to realize. Two-dimensional (2-D) coding systems have been introduced to improve the defect and they also maintain good correlation properties.
In this thesis, we propose a new 2-D code family for OCDMA system called folded optical orthogonal codes (FOOCs). We fold the original 1-D optical orthogonal codes (OOCs) into the matrix form to produce FOOCs. FOOCs use two dimensions, i.e. time and wavelength, for transmission. According to our analysis, FOOCs have good correlation properties and can supply large number of codes.
In the OCDMA system using FOOCs, we propose a novel and simple method to detect the active users. A special wavelength called pilot wavelength is added into the original transmission patterns of every user. At the receiver, therefore, we can acquire the number of the active users from the power of the pilot wavelength. Consequently, if we adjust the threshold value to the optimum threshold value according to the active users, we can decrease the bit error rate (BER) and improve the system performance.
[01]. J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part I. Fundamental principles,” IEEE Trans. Commun., vol. 37, no. 8, pp. 824-833, Aug. 1989.
[02]. D. Grosbie, “The new space race: satellite mobile communications,” IEE Review, vol. 39, no. 3, pp. 111-114, May 1993.
[03]. L. Tancevski, I. Andonovic, M. Tur, and J. Budin, “Massive optical LANs using wavelength hopping/time spreading with increased security,” IEEE Photon. Technol. Lett., vol. 8, no.7, pp. 935-937, July 1996.
[04]. N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, 1996.
[05]. J. F. Huang and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, no.9, pp. 1252-1254, Sept. 2000.
[06]. S. Kim, K. Yu, and N. Park, “A new family of space/wavelength/time spread three dimensional optical code for OCDMA networks,” J. Lightwave Technol., vol. 18, pp. 502-511, Apr. 2000.
[07]. R. M. Gagliardi, A. J. Mendez, M. R. Dale, and E. Park, “Fiber-optic digital video multiplexing using optical CDMA,” J. Lightwave Technol., vol. 11, pp. 20-26, Jan. 1993.
[08]. P. R. Prucnal, M. A. Santoro, and T. R. Fan, “Spread spectrum fiber-optic local area network using optical processing,” J. Lightwave Technol., vol. LT-4, no. 5, pp. 547-554, May 1986.
[09]. J. A. Salehi and C. A. Brackett, “Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834-842, Aug. 1989.
[10]. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol., vol. 15, pp. 1263-1276, Aug. 1997.
[11]. G. E. Town, K. Chan, and G. Yoffe, “Design and performance of high-speed optical pulse-code generators using optical fiber Bragg gratings,” IEEE J. Select. Topics Quantum Electron., vol. 5, no. 5, pp. 1325-1331, Sept./Oct. 1999.
[12]. F. R. K. Chung, J. A. Salehi, and V. K. Wei, “Optical orthogonal codes: Design, analysis, and applications,” IEEE Trans. Inform. Theory, vol. 35, no. 3, pp. 595-604, May 1989.
[13]. M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, pp. 534-545, Mar. 1995.
[14]. H. P. Sardesai, C. C. Desai, and A. M. Weiner, “A femtosecond code-division multiple-access communication system test bed,” J. Lightwave Technol., pp. 1953-1964, vol. 16, no. 11, Nov. 1998.
[15]. L. Tancevski and I. Andonovic, “Wavelength hopping/time spreading code division multiple access systems,” Electron. Lett., vol. 30, no. 17, pp. 1388-1390, Aug. 1994.
[16]. H. Heo, S.-S. Min, Y. H. Won, B. K. Kim, and B. W. Kim, “A new family of 2-D wavelength-time spreading code for optical code-division multiple-access system with balanced detection,” IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2189-2191, Sept. 2004.
[17]. A. J. Mendez, R. M. Gagliardi, V. J. Hernandez, C. V. Bennett, and W. J. Lennon, “Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA,” J. Lightwave Technol., vol. 21, no. 11, pp. 2524-2533, Nov. 2003.
[18]. G. C. Yang and W. C. Kwong, “Two-dimensional spatial signature patterns,” IEEE Trans. Commun., vol. 44, no. 2, pp. 184-191, Feb. 1996.
[19]. R. M. H. Yim, L. R. Chen, and J. Bajcsy, “Design and performance of 2D codes for wavelength-time optical CDMA,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 714-716, May 2002.
[20]. E. S. Shivaleela, K. N.Sivarajan, and A.Selvarajan, “Design of a new family of two-dimensional codes for fiber-optic CDMA networks,” J. Lightwave Technol., vol. 16, pp. 501-508, Apr. 1998.
[21]. E. S. Shivaleela, A. Selvarajan, and T. Srinivas, “Two-dimensional optical orthogonal codes for fiber-optic CDMA networks,” J. Lightwave Technol., vol. 23, no. 2, pp. 647-654, Feb. 2005.
[22]. W. C. Kwong, G. C. Yang, V. Baby, C. S. Bres, and P. R. Prucnal, “Multiple-wavelength optical orthogonal codes under prime-sequence permutations for optical CDMA,” IEEE Trans. Commun., vol. 53, no.1, pp. 1258-1265, Jan. 2005.
[23]. C. C. Yang, J. F. Huang, and Y. H. Wang, “Multi-pulse-per-row codes for high speed optical wavelength/time CDMA networks,” submitted to IEEE Photon. Technol. Lett..
[24]. R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “An overview of fiber-optic gyroscope,” J. Lightwave Technol., vol. LT-2, no.2, pp. 91-97, Jan. 1984.
[25]. D. K. Jung, “WDM PON based on spectrum-sliced fiber amplifier light source”, OFC ’98 Technical Digest.
[26]. B. H. Verbeek, C. H. Henry, N. A. Olsson, K. J. Orlowsky, R. F. Kazarinov, and B. H. Johnson, “Integrated four-channel Mach–Zehnder multi/demultiplexer fabricated with phosphorous doped SiO2 waveguides on Si,” J. Lightwave Technol., vol. 6, pp. 1011-1015, June 1988.
[27]. K. Oda, N. Tokato, T. Kominato, and H. Toba, “Channel selection and stabilization technique for a waveguide-type 16-channel frequency selection switch for optical FDM distribution systems,” IEEE Photon. Technol. Lett., vol. 1, no. 6, pp. 137-139, June 1989.
[28]. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter favrication”, Appl. Phys. Lett., vol.32, pp. 647-679, 1978.
[29]. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Select. Topics Quantum Electron., vol. 5, no. 5, pp.1227-1236, Sept./Oct. 1999.
[30]. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles design and applications,” IEEE J. Select. Topics Quantum Electron., vol. 2, no. 2, pp. 236-250, Jun. 1996.
[31]. K. Takada, M. Abe, T. Shibata, and K. Okamoto, “10-GHz-spaced 1010-channel tandem AWG filter consisting of one primary and ten secondary AWG's,” IEEE Photon. Technol. Lett., vol. 13, pp. 577-578, May 2001.
[32]. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron., vol. 37, pp. 525-532, Apr. 2001.
[33]. Y. K. Chen, C. J. Hu, C. C. Lee, K. M. Feng, M. K. Lu, C. H. Chang, Y. K. Tu, and S. L. Tzeng, “Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 12, pp. 1394-1397, Oct. 2000.
[34]. K. Kitayama, “Novel spatial spread spectrum based fiber optic CDMA Networks for image transmission,” IEEE J. Select. Areas Commun., vol. 12, pp. 762-772, May 1994.
[35]. C. C. Yang, J. F. Huang, and Y. H. Wang, comments on “Design and performance analysis of wavelength/time (W/T) matrix codes for optical CDMA,” accepted by J. Lightwave Technol..
[36]. Hyeon Heo, Seong-sik Min, Yong Hyub Won, Younghee Yeon, Bong Kyu Kim, Byoung Whi Kim, “A new family of 2-D wavelength–time spreading code for optical code-division multiple-access system with balanced detection,” IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2189-2191, Sep. 2004.
[37]. P. Saghari, R. Gholizadeh, H. Abrishami, E. Pakbaznia, J. E. McGeehan, S. M. R. M. Nezam, and A. E. Willner, “Experimental and theoretical analysis of the optimum decision threshold for varying numbers of active users in a 2-D time-wavelength asynchronous O-CDMA system,” J. Lightwave Technol., vol. 23, no. 10, pp. 3339-3346, Oct. 2005.
[38]. W. C. Kwong, P. A. Perrier, and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Trans. Commun., vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
[39]. E. K. H. Ng and E. H. Sargent, “Optimum threshold detection in real-time scalable high-speed multi-wavelength optical code-division multiple-access LANs,” IEEE Trans. Commun., vol. 50, no. 5, pp. 778-784, May 2002.
[40]. B. P. Lathi, “Modern Digital and Analog Communication Systems,” 3rd ed. New York: Oxford Univ. Press, 1998.
[41]. A. Leon-Garcia, “Probability and Random Processes for Electrical Engineering,” 2nd ed. New York: Addison-Wesley, 1994.
[42]. H. M. Kwon, “Optical orthogonal code-division multiple-access system—Part I: APD noise and thermal noise,” IEEE Trans. Commun., vol. 42, no. 7, pp. 2470-2479, July 1994.