簡易檢索 / 詳目顯示

研究生: 巫佩珊
Wu, Pei-Shan
論文名稱: 姬蝴蝶蘭花部PeMADS基因啟動子選殖及序列分析
Identification and characterization of promoter of PeMADS genes in Phalaenopsis equestris
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物學系
Department of Biology
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 82
中文關鍵詞: 啟動子蘭花花形
外文關鍵詞: promoter, orchid, AP3
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗目的為利用五個調控姬蝴蝶蘭(Phalaenopsis equestris)花部發育相關之轉錄因子PeMADS基因-AP3-like(PeMADS2、PeMADS3、PeMADS4、PeMADS5)及PI-like(PeMADS6)之五端未轉譯區(5’UTR)設計專一性引子,以姬蝴蝶蘭限制酵素基因庫(GenomeWalker library)或微小基因庫(Mini library)選殖出姬蝴蝶蘭五個花部基因轉錄因子之5’端啟動子區域。利用基因啟動子的分析,研究基因功能。此外構築可藉由報導基因表現姬蝴蝶蘭調控花部發育PeMADS基因啟動子之質體,利用農桿菌轉殖法將構築之質體轉殖阿拉伯芥中,利用轉殖植物確認各個基因啟動子之功能,分析五個PeMADS啟動子空間之表現模式。
    最後PeMADS2啟動子共選殖出1,312 bp、PeMADS3啟動子1,300 bp、PeMADS4啟動子418 bp、PeMADS5啟動子自ATG上游共選殖到260 bp及PeMADS6啟動子1,512 bp。其中CArG box在PeMADS2及PeMADS6啟動子各有兩個,在PeMADS4及PeMADS5啟動子各有一個,而PeMADS3啟動子上並未發現有CArG box。最後將較長片段之PeMADS2、PeMADS3及PeMADS6啟動子片段接上GUS報導基因以農桿菌法轉殖入阿拉伯芥中,以偵測啟動子之表現情形。

    Previously, five B-class of MADS box genes were identified in Phalaenopsis equestris including four AP3-like genes, PeMADS2, PeMADS3, PeMADS4, PeMADS5 and a PI-like gene, PeMADS6. In this research, the promoters of the fine PeMADS genes were isolated and characterized. Both PCR-based method and mini-library screening were used for cloning the PeMADS promoters.
    Results showed that the cloned promoter regions upstream of the transcription start site (TSS) of PeMADS2, PeMADS3, PeMADS4, and PeMADS6 genes were 1,312 bp, 1,300 bp, 418 bp and 1,512 bp, respectively. So far, only 260-bp sequence was identified upstream from the ATG of PeMADS5 gene. Two putative CArG box motifs were identified in the promoters of PeMADS2 and PeMADS6, and one in the promoter regions of PeMADS4 and PeMADS5. However, no CArG box can be identified in the PeMADS3 promoter region. To gain insight into the molecular basis of the regulation of PeMADS promoters, PeMADS promoter::GUS gene fusions were performed by means of the Agrobacterium-mediate transformation system in Arabidopsis. Results of these studies will provide knowledge to floral organ-, development stage-specific regulation in P. equestris.

    目錄 第一章、前言……………………………………………………………………1 第二章、文獻探討………………………………………………………………3 (一) MADS box基因與植物花器發育調控之關聯…………………………… 3 1. ABC模式(ABC model)……………………………………………………… 3 2. MADS box蛋白質的特性…………………………………………………… 4 3. 植物界的MADS box基因…………………………………………………… 4 4. APETAL 3及基因啟動子之研究…………………………………………… 5 5. 姬蝴蝶蘭花苞序列標籤資料庫之PeMADS box基因之初步分析結果…… 7 (二) 植物基因轉殖之研究…………………………………………………… 8 1. 植物基因轉殖之發展…………………………………………………8 2. 農桿菌基因轉殖法……………………………………………………9 第三章、材料與方法……………………………………………………………12 (一) 材料……………………………………………………………………… 12 1. 植物材料…………………………………………………………………… 12 2. 基因序列…………………………………………………………………… 12 3. 培養基及抽氣溶液………………………………………………………… 12 (二) 研究方法………………………………………………………………… 13 1. 啟動子選殖………………………………………………………………… 13 1.1抽取姬蝴蝶蘭基因組DNA……………………………………………………13 1.2建構姬蝴蝶蘭限制酵素基因庫(GenomeWalker library)……………… 14 1.2.1以限制酵素切基因組DNA…………………………………………………14 1.2.2純化切割之基因組DNA……………………………………………………14 1.2.3接合反應(ligation) ……………………………………………………15 1.3聚合酵素連鎖反應(GenomeWalker PCR) …………………………………15 1.4自洋菜膠回收DNA片段………………………………………………………16 1.5基因組DNA選殖及DNA定序………………………………………………… 16 1.5.1質體接合(ligation) ……………………………………………………16 1.5.2轉型作用(Transformation)…………………………………………… 16 1.5.3微量製備質體…………………………………………………………… 17 1.5.4 DNA自動定序…………………………………………………………… 18 1.5.4.1 Big Dye反應………………………………………………………… 18 1.5.4.2酒精沈澱……………………………………………………………… 18 1.6南方轉漬法(Southern blot)………………………………………………18 1.6.1萃取基因組DNA及切割基因組DNA……………………………………… 18 1.6.2酒精沉澱及洋菜膠電泳………………………………………………… 19 1.6.3 DNA轉漬………………………………………………………………… 19 1.6.4探針(probe)的製備………………………………………………………20 1.6.5南方雜合反應(Hybridization)…………………………………………20 1.7建構姬蝴蝶蘭微小基因庫(Mini library)……………………………… 20 1.7.1自洋菜膠回收DNA片段……………………………………………………20 1.7.2聚合酵素連鎖反應………………….……………………………………20 1.7.3質體接合、轉型作用及篩選藍白菌落 (blue/white colony screening)………………………………………21 1.7.4微小基因庫(Mini-library)篩選……………………………………… 21 1.7.4.1微小基因庫轉漬膜製備……………………………………………… 21 1.7.4.2雜合反應……………………………………………………………… 22 1.8啟動子序列分析…………………………………………………………… 22 1.8.1利用軟體分析啟動子序列……………………………………………… 22 1.8.2 CArG序列分析……………………………………………………………23 2. 姬蝴蝶蘭調控花部發育基因啟動子之功能分析………………………… 23 2.1選殖PeMADS基因啟動子之專一性引子設計……………………………… 23 2.2 T-A選殖法(T-A cloning) ……………………………………………… 23 2.3構築Ti (pBI101)載體………………………………………………………23 2.3.1質體DNA切割及回收………………………………………………………23 2.3.2質體接合(ligation)…………………………………………………… 24 2.3.3轉型作用及微量製備質體……………………………………………… 24 2.4農桿菌轉殖法……………………………………………………………… 24 2.4.1農桿菌勝任細胞製備…………………………………………………… 24 2.4.2電穿孔(electroporation) …………………………………………… 25 2.4.3微量製備質體…………………………………………………………… 25 2.4.4種植野生型阿拉伯芥…………………………………………………… 25 2.4.5基因轉殖(抽氣轉殖) ……………………………………………………26 2.5種植轉殖植株---阿拉伯芥…………………………………………………26 2.6轉殖分析---報導基因………………………………………………………27 第四章、結果……………………………………………………………………28 (一) 五個PeMADS基因啟動子選殖結果及初步序析………………………… 28 1. 利用姬蝴蝶蘭限制酵素基因庫及微小基因庫選殖PeMADS2~6基因 啟動子……………………………………………………………………… 28 1.1 PeMADS2之選殖結果及初步序列分析…………………………………… 28 1.2 PeMADS3之選殖結果及初步序列分析…………………………………… 28 1.3 PeMADS4之選殖結果及初步序列分析…………………………………… 29 1.4 PeMADS5之選殖結果及初步序列分析…………………………………… 30 1.5 PeMADS6之選殖結果及初步序列分析…………………………………… 31 2. 五個PeMADS啟動子之序列分析…………………………………………… 31 2.1啟動子之序列分析………………………………………………………… 32 2.2 CArG box 在PeMADS2~6基因啟動子之位置及序列………………………32 2.3啟動子序列之軟體分析結果……………………………………………… 32 (二) 三個PeMADS基因啟動子之功能分析初步結果………………………… 33 1. PeMADS2之選殖結果及轉殖初步分析………………………………………33 2. PeMADS3之選殖結果及轉殖初步分析………………………………………33 3. PeMADS6之選殖結果及轉殖初步分析………………………………………34 第五章、討論……………………………………………………………………35 1. 由五個PeMADS cDNA基因全長,設計引子選殖啟動子……………………35 2. 利用微小基因庫(Mini-library)篩選啟動子…………………………… 36 2.1利用微小基因庫篩選PeMADS4啟動子………………………………………36 2.2利用微小基因庫篩選PeMADS5啟動子………………………………………36 3. 啟動子序列分析及預測…………………………………………………… 37 3.1 PeMADS2及PeMADS6啟動子…………………………………………………38 3.2 PeMADS3A及PeMADS3B啟動子………………………………………………39 3.3 PeMADS4及PeMADS5啟動子…………………………………………………40 4. 結語………………………………………………………………………… 40 第六章、參考文獻………………………………………………………………42 表目錄 表一、PeMADS基因啟動子序列長度及序列分析結果…………………………51 表二、PeMADS基因啟動子之CArG box之序列比較……………………………52 圖目錄 圖一、選殖五個PeMADS基因啟動子所使用之基因專一性引子位置圖………53 圖二、PeMADS2 GenomeWalker聚合酵素連鎖反應結果………………………55 圖三、pGEM-T Easy/ PeMADS2、PeMADS3、PeMADS4、PeMADS5及PeMADS6 promoter質體……………………………………………………………56 圖四、PeMADS3 GenomeWalker聚合酵素連鎖反應結果………………………57 圖五、PeMADS3A及PeMADS3B之序列分析圖……………………………………58 圖六、PeMADS4 GenomeWalker聚合酵素連鎖反應結果………………………59 圖七、PeMADS4基因之南方轉漬結果………………………………………… 60 圖八、PeMADS5 GenomeWalker聚合酵素連鎖反應結果………………………61 圖九、PeMADS5基因之南方轉漬結果………………………………………… 62 圖十、PeMADS5之Mini-library結果………………………………………… 63 圖十一、以5’UTR設計引子所選殖出之PeMADS5啟動子及PeMADS5 5’UTR之 BLASTN比對結果圖.………………………………………………… 64 圖十二、利用Pe5+489r及Pe5+382r引子之PeMADS5 GenomeWalker 聚合酵素連鎖反應結果………………………………………………65 圖十三、PeMADS6 GenomeWalker聚合酵素連鎖反應結果……………………66 圖十四、PeMADS2~6之CArG box之位置圖…………………………………… 67 圖十五、PeMADS2啟動子PCR反應結果…………………………………………69 圖十六、PeMADS3啟動子PCR反應結果…………………………………………70 圖十七、PeMADS6啟動子PCR反應結果…………………………………………71 圖十八、pBI101質體/ PeMADS2、PeMADS3及PeMADS6 promoter質體………72 圖十九、PeMADS5之trans-splicing過程推測圖…………………………… 73 附表目錄 附表一、姬蝴蝶蘭花苞序列表現標籤資料庫PeMADS基因表現結果…………75 附表二、AP3及DOMADS1之CArG box之序列……………………………………76 附圖目錄 附圖一、論文材料,姬蝴蝶蘭…………………………………………………77 附圖二、建構姬蝴蝶蘭限制酵素基因庫(GenomeWalker library)之流程圖78 附圖三、AP3及DOMADS1啟動子之CArG box之位置圖…………………………79 附圖四、PI啟動子………………………………………………………………80 附圖五、pGEM-T Easy質體…………………………………………………… 81 附圖六、pBI101質體……………………………………………………………82

    蔡文杰,未發表之論文。

    詹明才,張新雄 1989 農桿菌簡介及其未來的應用。科學農業 37(11-12):294-299.

    Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F. and Yanofsky, M.F. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots, and trichomes. Plant J. 24: 457-466.

    Arencibia, A. D., Carmona, E. R., Tellez, P., Chan, M. T. , Yu, S. M., Trujillo, L. E. and Oramas, P. 1998. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Research 7: 213-222.

    Bonen, L. 1993. Trans-splicing of the pre-mRNA in plants, animals, and protists. FASEB J. 7: 40-46.

    Bowman, J. L., Smyth, D. R., and Meyerowitz, E. M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20.

    Bradley, D., Carpenter, R., Sommer, H., Hartley, N., and Coen, E. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85-95.

    Carmona, M. J., Ortega, N., and Garcia-Maroto, F. 1998. Isolation and molecular characterization of a new vegetative MADS-box gene from Solanum tuberosum L. Planta 207: 181-188.

    Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F., and Yu, S. M. 1993. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol. Biol. 22: 491-506.

    Chen, W. H., and Wang, Y. T. 1996. Phalaenopsis orchid culture. Taiwan Sugar 43: 11-16.

    Chilton, M. D., Drummond, M. H., Merio, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., and Nester, E. W. 1977. Stable incorporation of plasmid DNA into high plant cells: the moleculer basis of crown gall tumorigenesis. Cell 11: 263-271.

    Citovsky, V., De Vos, G., and Zambryski, P. 1988. Single-stranded DNA binding protein encoded by the virE locus of Agrobacterium tumefaciens. Science 240: 501-504.

    Coen, E. S., and Meyerowitz, E. M. 1991. The whorl of the whorls: genetic interactions controlling flower development. Nature 353: 31-37.

    Cormack, R. S. and Somssich, I. E. 1997. Rapid amplification of genomic ends (RAGE) as a simple methods to clone flanking genomic DNA. Gene 194: 273-276.

    Crossway, A., Oakes, J. V., Irvine, J. M., Ward, B., Knauf, V. C., and Shewmarker, C. K. 1986. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202: 179-185.

    Davies, B., and Schwarz-Sommer, Z. 1994. Control of floral organ identity by homeotic MADS-box transcription factors. IN: Nover L., ed. Results and Problems in Cell Differentiation and Transcription Factors, Springer-Verlag, Berlin Heidelberg. pp. 236-258.

    Das, A. 1988. Agrobacteerium tumefaciens virE operon encodes a single-stranded DNA-binding protein. Proc. Natl. Acad. Sci. USA 85: 2909-2913.

    Douglas, C. J., Staneloni, R. J., Rubin, R. A., Nester, E. W. 1985. Identification and genetic analysis of an Agrobacteerium tumefaciens chromosomal virulence region. J. Bacteriol. 161: 850-860.

    Formm, M. E., Taylor, T., and Walbot,V. 1986. Stable transformation of maize after gene transfer by electroporation. Nature 319: 719-793.

    Goto, K., and Meyerowitz, E. M. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.

    Hasebe, M., Wen, C. K., Kato, M., and Banks, J. A. 1998. Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci. USA 95: 6222- 6227.

    Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282.

    Hill, T. A., Day, C. D., Zondlo, S. C., Thackeray, A. G., and Irish, V. F.,
    Sieburth, L. E., and Meyerowitz, E. M. 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9: 355-365.

    Hill, T. A., Day, C. D., Zondlo, S. C., Thackeray, A. G., and Irish, V. F.
    1998. Discrete spatial and temporal cis-acting elements regulate transcription
    of the Arabidopsis floral homeotic gene APETALA3. Development 125: 1711-1721.

    Howe, C.J., Barbrook, A.C., Koumandou, V. L., Nisbet, R.E., Symington, H.A., Wightman, T.F.2003. Evolution of the chloroplast genome. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358: 99-107.

    Honma, T., Goto, K. 2000. The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-element responsive to induction and maintenance signals. Development 127: 2021-2030.

    Hsu, H. F. and Yang, C. H. 2002. An Orchid (Oncidium Gower Ramsey) AP3-like MADS gene regulates floral formation and Initiation. Plant and Cell Physiol. 43: 1198-1209.

    Huang, C.Y., Ayliffe, M. A., Timmis, J. N. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422: 72-6.

    Huijser, P., Klein, J., Lonnig, W. E., Meijer, H., Saedler, H., and Sommer, H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. EMBO J. 11: 1239-1249.

    Ishida, Y., Saito, H., Ohta, S., Hiei, Y., Komari, T., and Kumashiro, T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat. Biotechnol. 14:745-750.

    Jack, T. 2001. Plant development going MADS. Plant Mol. Biol. 46: 515-520.

    Jack, T., Brockman, L. L., and Meyerowitz, E. M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68: 683-697.

    Jack, T., Fox, G. L., and Meyerowitz, E. M. 1994. Arabidopsis homeotic
    gene APETALA3 ectopic expression: transcriptional and post- transcriptional regulation determine floral organ identity. Cell 76: 703-716.
    Kawasaki1, T., Satoru, O., Naoki, K., Hiroaki, S., Kenichi, H., and Norio I. 1999. RNA maturation of the rice SPK gene may involve trans-splicing Plant J. 18: 625-632

    Klein, T. M., Wolf, E. D., Wu, R., and Sanford, J. C. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70-73.

    Liau, C. H., You, S. J., Prasad, V., Hsiao, H. H., Lu, J. C., Yang, N. S., and Chan, M. T. 2003. Agrobacterium- mediated Genetic Transformation of an Oncidium orchid. Plant Cell Rep. 10: 993-998.

    Ma, H., Yanofsky, M. F., and Meyerowitz, E. M. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Dev. 5: 484-495.

    Mathysse, A. G. 1987. Characterization of nonattaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169: 313-323.

    Millen, R. S., Richard, G. O., Keith, L. A., Jeffrey, D. P., Nga T. L., Laura H., Tony, A. K., Julian, M. H., John, C. G., Clifford, W. M., Patrick, J. C., Lars, S. J., and Kenneth, H. W. 2001. Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13: 645-658.

    Turk, S. C., Melchers, L. S., den Dulk-Ras H., Regensburg-Tuink A. J., Hooykaas P. J. 1991. Environmental conditions differentially affect vir gene induction in different Agrobacterium strains. Role of the VirA sensor protein. Plant Mol. Biol. 16: 1051-1059.

    Meyerowitz, E. M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.

    Meyerowitz, E. M., and Yanofsky, M. F. 1992. Manipulation of flower structure in transgenic tobacco. Cell 71: 133-143.

    Mizukami, Y., and Ma, H. 1992. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393-408.

    Ohta, Y. 1986. High-efficiency genetic transformation of maize by mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83: 715-719.

    Okamoto, H., Yano, A., Shiraishi, H., Okada, K., and Shimura, Y. 1994. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus. Plant Mol. Biol. 26: 465-472.

    Park, J. H., Ishikawa, Y., Yoshida, R., Kanno, A., Kameya, T. 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol. 51:867-75.

    Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E., and Yanofsky, M. F. 2000. B and C floral identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203.

    Pellegrini, L., Tan, S., and Richmond, T. J. 1995. Structure of serum response factor core bound to DNA. Nature 376: 490-498.

    Potrykus, I., Saul, M., Petruska, J., Paszkowski, J., and Shillito, R. 1985. Direct gene transfer to cells of graminaceous monocot. Mol. Gen. Genet. 199: 183-188.

    Rashid, H., Yokoi, S., Toriyama, K., and Hinata, K. 1996. Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep. 15: 727-730.

    Riechmann, J. L., Krizek, B. A., and Meyerowitz, E. M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.

    Rounsley, S. D., Ditta, G. S., and Yanofsky, M. F. 1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.

    Rutledge, R., Regan, S., Nicolas, O., and Stewart, D. 1998. Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15: 625-634.

    Sakai, H., Medrano, L. J. and Meyerowitz, E. M. 1995. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199-201.

    Samach, A., Kohalmi, S. E., Motte, P., Datla, R., and Haughn, G. W. 1997.
    Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9: 559-570.

    Shore, P., and Sharrocks, A. D. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229: 1-13.

    Sommer, H., Beltran, J. P., Huijser, P., Pape, H., Lonnig, W. E., Saedler, H., and Schwarz-Sommer, Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.

    Stachel, S. E., Messens, E., Van Montagu, M., Zambryski, P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens to plant cell. Nature 318: 624-629.

    Stegemann, S., Hartmann, S., Ruf, S., Bock, R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. USA 100: 8828-33.

    Tepfer, M., and Casse-Delbant, F. 1987. Agrobacterium rhizogenes as a vector for transformating higher plant. Micro. Sci. 4: 24-28.

    Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Munster, T., Winter, K. U., and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol. Biol. 42: 115-49.

    Theisen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85

    Thomshow, M. F., Karlinsey, J. E., Marks, J. R., and Hurlbert, R. E. 1987. Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J. Bacteriol. 169: 3209-3216.

    Thompson, D. V., Melchers, L. S., Idler, K. B., Schilperoot, R. A., and Hooykaas, P. J. 1988. Analysis of the complete nucleotide sequence of the Agrobacterium tumefaciens virB operon. Nucleic Acids Res. 16: 4621-4636.

    Tilly, J. J., Allen, D. W., and Jack, T. 1998. The CArG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.

    Tzeng, T. Y. and Yang, C. H. 2001. A MADS box gene from lily (Lilium longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant and Cell Physiol. 42:1156-1168.

    Trobner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lonnig, W. E., Saedler, H., Sommer, H., and Schwarz-Sommer, Z. 1992. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11: 4693-4704.

    Ward, J. E., Akiyoshi, D. E., Regier, D., Datta, A., Gordon, M. P., and Nester, E. W. 1988. Characterization of the virB operon from an Agrobacterium tumefaciens Ti plasmid. J. Biol. Chem. 263: 5804-5814.

    Weigel, D. and Meyerowitz, E. M. 1993. Activation of floral homeotic genes in Arabidopsis. Science 261: 1723-1726.

    Weigel, D., and Meyerowitz, E. M. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.

    Yanofsky, M. F., S. G. Porter, C. Young, L. M. Albright, M. P. Gordon, and E. W. Nester. 1986. the virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell 47:471-477.

    Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldman, K. A., and Meyerowitz, E. M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.

    Yu, H., Yang, S. H., and Goh, C. J. 2002. Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol. Biol. 49: 225-227.

    Zhou, G. Y., Weng, J., Zeng, Y., Huang, S. Q., and Liu, G. 1983. Introduction of exogenous DNA into cotton embryos. Methods in Enzymol. 101: 433-481.

    下載圖示 校內:2013-08-06公開
    校外:2013-08-06公開
    QR CODE