簡易檢索 / 詳目顯示

研究生: 游凱元
Alido, John Peter
論文名稱: 合成與探討銀/複合1T-2H二硫化鉬/二氧化鈦界孔洞球珠的光催化表現
Synthesis and Photocatalytic Performance of Ag/Hybridized 1T-2H MoS2/TiO2 Mesoporous Beads
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 94
外文關鍵詞: Ag, hybridized 1T-2H MoS2, TiO2 mesoporous beads
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有著界孔洞球珠結構的二氧化鈦光觸媒可以提供比市售P25二氧化鈦更佳的降解能力,原因是它具有較高的比表面積,較佳的光散射性質與極好的傳輸效率。然而二氧化鈦不易吸收可見光且光激發產生的電子電洞對的再結合速率快,此特性限制在光觸媒上的實際應用。因此期望製造具能有效分離電荷的可見光驅動光催化劑。在這項研究中開發了一種新穎有效的光催化劑銀 /複合1T-2H 二硫化鉬 / 二氧化鈦界孔洞球珠。首先使用溶膠 - 凝膠法合成二氧化鈦界孔洞球珠,然後進行微波輔助水熱法。另一方面,使用傳統水熱法合成了複合1T-2H二硫化鉬微米花。接著通過混合硝酸銀,二氧化鈦界孔洞球珠和二硫化鉬微米花,然後通過添加硼清氫化鈉進行化學還原法製備銀 /複合1T-2H 二硫化鉬 / 二氧化鈦界孔洞球珠。具有不同重量百分比的銀,二硫化鉬和二氧化鈦界孔洞球珠比例的光催化劑被合成與調查。我們使用XRD,XPS,拉曼,SEM,TEM,EDS,UV-Vis和PL檢驗合成的樣品。在235 W 氙燈下使用亞甲基藍溶液的降解來測量不同光催化劑的光催化性能。經測試發現在二氧化鈦介孔球珠光催化劑中添加銀和二硫化鉬可使光降解能力提高。這是由於可見光吸收的增強和有效的電荷分離。此外,含有1 wt. %銀和1:2的MoS2:TiO2在所有樣品中表現出最佳的光催化降解能力。

    TiO2 photocatalyst having a mesoporous bead-like structure would provide better photodegradation ability than the commercial TiO2 P25 nanoparticles due to its higher surface area, better light scattering, and excellent transport rate. However, the inactivity of TiO2 under visible light and the high recombination rate of photogenerated electron-hole pairs limit its practical applications as a photocatalyst. Thus, it is desirable to fabricate a visible light driven photocatalyst with efficient charge separation. In this study, a novel and efficient photocatalyst Ag/hybridized 1T-2H MoS2/TiO2 mesoporous beads was developed. TiO2 mesoporous beads were first synthesized through sol-gel process, followed by microwave-assisted hydrothermal method. On the other hand, hybridized 1T-2H MoS2 microflowers were synthesized through conventional hydrothermal method. After, Ag/hybridized 1T-2H MoS2/TiO2 mesoporous beads were fabricated by mixing AgNO3, TiO2 mesoporous beads, and MoS2 microflowers, followed by chemical reduction method via addition of NaBH4. Photocatalysts having different weight percentages and ratios of Ag, MoS2, and TiO2 mesoporous beads were synthesized and investigated. The synthesized samples were characterized using XRD, XPS, Raman, SEM, TEM, EDS, UV-Vis, and PL. The photocatalytic performance was measured through the degradation of methylene blue solution in the presence of different photocatalyst samples under a 235 W Xe lamp. It was found out that the photodegradation ability was greatly enhanced by the addition of Ag and MoS2 to TiO2 mesoporous beads photocatalyst. This was due to the enhancement of the visible light absorption and the efficient charge separation. Furthermore, the photocatalyst containing 1 wt. % of Ag and 1:2 ratio of MoS2:TiO2 exhibited the highest photodegradation ability among all samples.

    摘要 i Abstract ii Acknowledgement iii List of Tables viii List of Figures ix 1. Introduction 1 1.1. Preface 1 1.2. Motivations and Objectives 3 2. Fundamental Theory and Literature Review 5 2.1. Photocatalysis 5 2.2. Titanium Dioxide 8 2.2.1. TiO2 Structure and Properties 8 2.2.2. TiO2 as a Photocatalyst 9 2.2.3. TiO2 Mesoporous Beads 10 2.2.4. TiO2 Mesoporous Beads against Degussa P25 11 2.2.5. TiO2 Mesoporous Beads Synthesis 11 2.3. Photodegradation Ability Enhancement 12 2.3.1. Introduction of a Dopant 12 2.3.2. Plasmonic Materials 15 2.3.3. Addition of a Cocatalyst 18 2.4. Molybdenum Sulfide 21 2.4.1. MoS2 Structure and Properties 21 2.4.2. Hybridized 1T-2H MoS2 Synthesis and Formation Mechanism 24 3. Experimental Methods 25 3.1. Materials 25 3.2. Samples Preparation 25 3.2.1. Synthesis of TiO2 Mesoporous Beads Photocatalyst 25 3.2.2. Synthesis of Hybridized 1T-2H MoS2 Microflowers Photocatalyst 26 3.2.3. Synthesis of Ag/TiO2 Mesoporous Beads Photocatalyst 27 3.2.4. Synthesis of Hybridized 1T-2H MoS2/TiO2 Mesoporous Beads Photocatalyst 28 3.2.5. Synthesis of Ag/Hybridized 1T-2H MoS2/TiO2 Mesoporous Beads Photocatalyst 29 3.3. Characterization 30 3.3.1. X-Ray Diffraction (XRD) 30 3.3.2. X-Ray Photoemission Spectroscopy (XPS) 30 3.3.3. Brunauer-Emmet-Teller (BET) 31 3.3.4. Raman Spectroscopy 31 3.3.5. Scanning Electron Microscopy (SEM) 31 3.3.6. Transmission Electron Microscopy (TEM) 31 3.3.7. Energy-Dispersive X-ray Spectroscopy (EDS) 31 3.3.8. UV-Visible Spectroscopy (UV-Vis) 32 3.3.9. Photoluminescence Spectroscopy (PL) 32 3.3.10. Photocatalytic Performance Measurement 32 4. Results and Discussion 34 4.1. TiO2 Mesoporous Beads Photocatalyst 34 4.1.1. XRD Analysis 34 4.1.2. SEM Analysis 35 4.1.3. BET Analysis 36 4.1.4. UV-Visible Absorption Analysis 37 4.1.5. Photocatalytic Degradation Analysis 39 4.2. MoS2 Microflowers Photocatalyst 41 4.2.1. XRD Analysis 42 4.2.2. SEM Analysis 43 4.2.3. Raman Analysis 44 4.2.4. XPS Analysis 46 4.2.5. UV-Visible Absorption Analysis 48 4.2.6. Photocatalytic Degradation Analysis 49 4.3. Ag/TiO2 Mesoporous Beads Photocatalyst 51 4.3.1. XRD Analysis 52 4.3.2. XPS Analysis 53 4.3.3. SEM Analysis 55 4.3.4. TEM/EDS Analysis 56 4.3.5. UV-Vis Absorption Analysis 58 4.3.6. PL Analysis 59 4.3.7. Photocatalytic Degradation Analysis 61 4.4. Hybridized 1T-2H MoS2/TiO2 Mesoporous Beads Photocatalyst 64 4.4.1. XRD Analysis 65 4.4.2. SEM Analysis 66 4.4.3. UV-Visible Absorption Analysis 68 4.4.4. PL Analysis 69 4.4.5. Photocatalytic Degradation Analysis 70 4.5. Ag/Hybridized 1T-2H MoS2/TiO2 Mesoporous Beads Photocatalyst 73 4.5.1. XRD Analysis 74 4.5.2. SEM Analysis 75 4.5.3. TEM/EDS Analysis 76 4.5.4. UV-Visible Absorption Analysis 77 4.5.5. PL Analysis 78 4.5.6. Photocatalytic Degradation Analysis 80 5. Conclusion 84 References 85 Appendix 92

    [1] P. B. S. Ratna, “Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation,” Int. J. Environ. Sci., vol. 3, no. 3, pp. 940–955, 2012.
    [2] U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems,” J. Photochem. Photobiol. C Photochem. Rev., vol. 9, no. 1, pp. 1–12, 2008.
    [3] U. G. Akpan and B. H. Hameed, “Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review,” J. Hazard. Mater., vol. 170, no. 2–3, pp. 520–529, 2009.
    [4] M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O’Shea, M. H. Entezari, and D. D. Dionysiou, “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, pp. 331–349, 2012.
    [5] D. J. Martin, K. Qiu, S. A. Shevlin, A. D. Handoko, X. Chen, Z. Guo, and J. Tang, “Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride,” Angew. Chemie - Int. Ed., vol. 53, no. 35, pp. 9240–9245, 2014.
    [6] A. Ibhadon and P. Fitzpatrick, “Heterogeneous Photocatalysis: Recent Advances and Applications,” Catalysts, vol. 3, no. 1, pp. 189–218, 2013.
    [7] A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37–38, 1972.
    [8] A. N. Banerjee, “The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures,” Nanotechnol. Sci. Appl., vol. 4, no. 1, pp. 35–65, 2011.
    [9] A. H. Aïssa, E. Puzenat, A. Plassais, J.-M. Herrmann, C. Haehnel, and C. Guillard, “Characterization and photocatalytic performance in air of cementitious materials containing TiO2. Case study of formaldehyde removal,” Appl. Catal. B Environ., vol. 107, no. 1–2, pp. 1–8, 2011.
    [10] N. Serpone and a. V. Emeline, “Semiconductor Photocatalysis - Past, Present, and Future Outlook,” J. Phys. Chem. Lett., vol. 3, pp. 673–677, 2012.
    [11] N. Pugazhenthiran, S. Murugesan, and S. Anandan, “High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium,” J. Hazard. Mater., vol. 263, pp. 541–549, 2013.
    [12] H. Li, Y. Wang, G. Chen, Y. Sang, H. Jiang, J. He, X. Li, and H. Liu, “Few-layered MoS 2 nanosheets wrapped ultrafine TiO 2 nanobelts with enhanced photocatalytic property,” Nanoscale, vol. 8, no. 11, pp. 6101–6109, 2016.
    [13] L.-C. Chen, C.-R. Ke, and J.-M. Ting, “All-Plastic Flexible Dye-Sensitized Solar Cell Based on Solution Synthesized Mesoporous Anatase TiO2 Beads,” J. Electrochem. Soc. , vol. 161, no. 3, pp. E28–E33, 2014.
    [14] C.-W. Hsu, P. Chen, and J.-M. Ting, “Microwave-Assisted Hydrothermal Synthesis of TiO2 Mesoporous Beads Having C and/or N Doping for Use in High Efficiency All-Plastic Flexible Dye-Sensitized Solar Cells,” J. Electrochem. Soc., vol. 160, no. 3, pp. H160–H165, 2013.
    [15] C.-R. Ke, J.-S. Guo, Y.-H. Su, and J.-M. Ting, “The effect of silver nanoparticles/graphene-coupled TiO 2 beads photocatalyst on the photoconversion efficiency of photoelectrochemical hydrogen production,” Nanotechnology, vol. 27, no. 43, p. 435405, 2016.
    [16] X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, and T. Chen, “Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction,” Nat. Commun., vol. 7, p. 10672, 2016.
    [17] W. Wu, C. Jiang, and V. A. L. Roy, “Recent Progress in Magnetic Iron Oxide Semiconductor Composite Nanomaterials as Promising Photocatalysts,” Nanoscale, pp. 38–58, 2014.
    [18] N. Nolan, M. Seery, and S. Pillai, “Spectroscopic Investigation of the Anatase-to-Rutile Transformation of Sol− Gel-Synthesized TiO2 Photocatalysts,” J. Phys. Chem. C, vol. 113, no. ii, pp. 1615–16157, 2009.
    [19] X. Chen and S. S. Mao, “Titanium Dioxide Nanomaterials : Synthesis , Properties , Modifications , and Applications,” 2007.
    [20] X. Q. Gong and A. Selloni, “First-principles study of the structures and energetics of stoichiometric brookite Ti O2 surfaces,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 76, no. 23, pp. 1–11, 2007.
    [21] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., vol. 95, no. 1, pp. 69–96, 1995.
    [22] S. N. Frank and A. J. Bard, “Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at TiO2 Powder,” J. Am. Chem. Soc., vol. 99, no. 1, pp. 303–304, 1977.
    [23] U. De Picardie, J. Verne, D. Chen, P. Comte, F. Huang, Ќ. L. Heiniger, and Y. Cheng, “Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous TiO2 Beads Achieve Power Conversion Efficiencies Over 10%,” ACS Nano, vol. 4, no. August 2016, pp. 4420–4425, 2010.
    [24] M. Malekshahi Byranvand, A. N. Kharat, L. Fatholahi, and Z. M. Beiranvand, “A Review on Synthesis of Nano-TiO 2 via Different Methods. Jns, 3, 1–9. https://doi.org/10.1016/j.progsolidstchem.2004.08.001A Review on Synthesis of Nano-TiO 2 via Differ,” Jns, vol. 3, pp. 1–9, 2013.
    [25] C. Ke, L. Chen, and J. Ting, “Photoanodes Consisting of Mesoporous Anatase TiO 2 Beads with Various Sizes for High Efficiency Flexible Dye-Sensitized Solar Cells Efficiency Flexible Dye-Sensitized Solar Cells,” 2012.
    [26] C.-R. Ke and J.-M. Ting, “Anatase TiO2 beads having ultra-fast electron diffusion rates for use in low temperature flexible dye-sensitized solar cells,” J. Power Sources, vol. 208, pp. 316–321, 2012.
    [27] D. Chen, L. Cao, F. Huang, P. Imperial, Y. B. Cheng, and R. A. Caruso, “Synthesis of monodisperse mesoporous titania beads with controllable diameter, high surface areas, and variable pore diameters (14-23 nm),” J. Am. Chem. Soc., vol. 132, no. 12, pp. 4438–4444, 2010.
    [28] R. Dholam, N. Patel, M. Adami, and A. Miotello, “Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst,” Int. J. Hydrogen Energy, vol. 34, no. 13, pp. 5337–5346, 2009.
    [29] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions,” Phys. Chem. Chem. Phys., vol. 7, no. 10, p. 2241, 2005.
    [30] R. Asahi, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science (80-. )., vol. 293, no. 5528, pp. 269–271, 2001.
    [31] X. Chen, X. Chen, C. Burda, and C. Burda, “The Electronic Origin of the Visible-Light Absorption Properties of C-, N- and S-Doped TiO 2 Nanomaterials,” J. Am. Chem. Soc., vol. 130, pp. 5018–5019, 2008.
    [32] J. Senthilnathan and L. Philip, “Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2,” Chem. Eng. J., vol. 161, no. 1–2, pp. 83–92, 2010.
    [33] P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei, and M. H. Whangbo, “Ag@AgCl: A highly efficient and stable photocatalyst active under visible light,” Angew. Chemie - Int. Ed., vol. 47, no. 41, pp. 7931–7933, 2008.
    [34] H. Zhang, X. Fan, X. Quan, S. Chen, and H. Yu, “Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light,” Environ. Sci. Technol., vol. 45, no. 13, pp. 5731–5736, 2011.
    [35] X. Liu, Z. Xing, Y. Zhang, Z. Li, X. Wu, S. Tan, X. Yu, Q. Zhu, and W. Zhou, “Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance,” Appl. Catal. B Environ., vol. 201, pp. 119–127, 2017.
    [36] S. Bai, L. Wang, X. Chen, J. Du, and Y. Xiong, “Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals,” Nano Res., vol. 8, no. 1, pp. 175–183, 2014.
    [37] W. Gao, M. Wang, C. Ran, and L. Li, “Facile one-pot synthesis of MoS2 quantum dots–graphene–TiO2 composites for highly enhanced photocatalytic properties,” Chem. Commun., vol. 51, no. 9, pp. 1709–1712, 2015.
    [38] G. Zhang, H. Liu, J. Qu, and J. Li, “Two-dimensional layered MoS 2 : rational design, properties and electrochemical applications,” Energy Environ. Sci., vol. 9, no. 4, pp. 1190–1209, 2016.
    [39] X. Huang, Z. Zeng, and H. Zhang, “Metal dichalcogenide nanosheets: preparation, properties and applications,” Chem. Soc. Rev., vol. 42, no. 5, p. 1934, 2013.
    [40] N. a Mirin, a A. Tamer, P. Nordlander, and N. J. Halas, “Perforated Semishells : Far-Field Directional Control and Optical Frequency Magnetic Response,” ACS Nano, vol. 4, no. 5, pp. 2701–2712, 2010.
    [41] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, “Valley polarization in MoS2 monolayers by optical pumping,” Nat. Nanotechnol., vol. 7, no. 8, pp. 490–493, 2012.
    [42] H. D. Ha, D. J. Han, J. S. Choi, M. Park, and T. S. Seo, “Dual Role of Blue Luminescent MoS2 Quantum Dots in Fluorescence Resonance Energy Transfer Phenomenon,” Small, vol. 10, no. 19, pp. 3858–3862, 2014.
    [43] Y. Wang, S. Wang, C. Li, M. Qian, J. Bu, J. Wang, and R. Huang, “Facile growth of well-dispersed and ultra-small MoS 2 nanodots in ordered mesoporous silica nanoparticles,” Chem. Commun., vol. 52, no. 67, pp. 10217–10220, 2016.
    [44] A. R. Beal, J. C. Knights, and W. Y. Liang, “Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination,” J. Phys. C Solid State Phys., vol. 5, no. 24, pp. 3540–3551, 1972.
    [45] G. C. Xu, X. S. Wang, Y. P. Sun, X. Chen, J. Y. Zheng, L. F. Sun, L. Y. Jiao, and J. H. Li, “Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges,” Nano Res., vol. 8, no. 9, pp. 2946–2953, 2015.
    [46] X. Chia, A. Y. S. Eng, A. Ambrosi, S. M. Tan, and M. Pumera, “Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides,” Chem. Rev., vol. 115, no. 21, pp. 11941–11966, 2015.
    [47] D. Voiry, A. Mohite, and M. Chhowalla, “Phase engineering of transition metal dichalcogenides,” Chem. Soc. Rev., vol. 44, no. 9, pp. 2702–2712, 2015.
    [48] M. Calandra, “Chemically exfoliated single-layer MoS 2: Stability, lattice dynamics, and catalytic adsorption from first principles,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 88, no. 24, pp. 1–6, 2013.
    [49] F. Güller, A. M. Llois, J. Goniakowski, and C. Noguera, “Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 91, no. 7, pp. 1–7, 2015.
    [50] D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, “Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction.,” Nano Lett., vol. 13, no. 12, pp. 6222–7, 2013.
    [51] H. S. Mos and E. D. A. E. T. Al, “Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2,” ACS Nano, no. 8, pp. 7311–7317, 2012.
    [52] K. J. Huang, J. Z. Zhang, G. W. Shi, and Y. M. Liu, “Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material,” Electrochim. Acta, vol. 132, pp. 397–403, 2014.
    [53] L. Wang, Y. Ma, M. Yang, and Y. Qi, “Hierarchical hollow MoS2 nanospheres with enhanced electrochemical properties used as an Electrode in Supercapacitor,” Electrochim. Acta, vol. 186, no. 3, pp. 391–396, 2015.
    [54] J. M. Soon and K. P. Loh, “Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films,” Electrochem. Solid-State Lett., vol. 10, no. 11, p. A250, 2007.
    [55] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, “Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution,” Adv. Mater., vol. 25, no. 40, pp. 5807–5813, 2013.
    [56] T. Oztas, H. S. Sen, E. Durgun, and B. Ortaç, “Synthesis of Colloidal 2D/3D MoS2 Nanostructures by Pulsed Laser Ablation in an Organic Liquid Environment,” J. Phys. Chem. C, vol. 118, pp. 30120–30126, 2014.
    [57] Y. H. Lee, X. Q. Zhang, W. Zhang, M. T. Chang, C. Te Lin, K. Di Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, “Synthesis of large-area MoS 2 atomic layers with chemical vapor deposition,” Adv. Mater., vol. 24, no. 17, pp. 2320–2325, 2012.
    [58] a. Zak, Y. Feldman, V. Alperovich, R. Rosentsveig, and R. Tenne, “Growth mechanism of MoS 2 fullerene-like nanoparticles by the gas phase synthesis,” J. Am. Chem. Soc., vol. 122, no. 45, pp. 11108–11116, 2000.
    [59] G. Feng, A. Wei, Y. Zhao, and J. Liu, “Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method,” J. Mater. Sci. Mater. Electron., vol. 26, no. 10, pp. 8160–8166, 2015.
    [60] H. J. Zhai and L. S. Wang, “Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n
    - (n = 1-10) using photoelectron spectroscopy,” J. Am. Chem. Soc., vol. 129, no. 10, pp. 3022–3026, 2007.
    [61] K. D. Rasamani, F. Alimohammadi, and Y. Sun, “Interlayer-expanded MoS2,” Mater. Today, vol. 20, no. 2, pp. 83–91, 2017.
    [62] Q. Liu, X. Li, Q. He, A. Khalil, D. Liu, T. Xiang, X. Wu, and L. Song, “Gram-Scale Aqueous Synthesis of Stable Few-Layered 1T-MoS2: Applications for Visible-Light-Driven Photocatalytic Hydrogen Evolution,” Small, vol. 11, no. 41, pp. 5556–5564, 2015.
    [63] Y. J. Tang, Y. Wang, X. L. Wang, S. L. Li, W. Huang, L. Z. Dong, C. H. Liu, Y. F. Li, and Y. Q. Lan, “Molybdenum Disulfide/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution,” Adv. Energy Mater., vol. 6, no. 12, pp. 1–7, 2016.
    [64] J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, and R. Wang, “Controllable Disorder Engineering in Oxygen- Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution,” J. Am. Chem. Soc., vol. 135, pp. 17881–17888, 2013.
    [65] Y. Li, Y. Liang, F. C. Robles Hernandez, H. Deog Yoo, Q. An, and Y. Yao, “Enhancing sodium-ion battery performance with interlayer-expanded MoS2-PEO nanocomposites,” Nano Energy, vol. 15, pp. 453–461, 2015.
    [66] H. Li, K. Yu, H. Fu, B. Guo, X. Lei, and Z. Zhu, “MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries,” J. Phys. Chem. C, vol. 119, no. 14, pp. 7959–7968, 2015.
    [67] X. Y. Yu, H. Hu, Y. Wang, H. Chen, and X. W. D. Lou, “Ultrathin MoS2 Nanosheets Supported on N-doped Carbon Nanoboxes with Enhanced Lithium Storage and Electrocatalytic Properties,” Angew. Chemie - Int. Ed., vol. 54, no. 25, pp. 7395–7398, 2015.
    [68] Y. Xia, B. Wang, X. Zhao, G. Wang, and H. Wang, “Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries,” Electrochim. Acta, vol. 187, pp. 55–64, 2016.
    [69] J. Guo, H. Zhu, Y. Sun, L. Tang, and X. Zhang, “Boosting the lithium storage performance of MoS2 with graphene quantum dots,” J. Mater. Chem. A, vol. 4, no. 13, pp. 4783–4789, 2016.
    [70] S. Wang, J. Tu, Y. Yuan, R. Ma, and S. Jiao, “Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries,” Phys. Chem. Chem. Phys., vol. 18, no. 4, pp. 3204–3213, 2016.
    [71] K. Ai, C. Ruan, M. Shen, and L. Lu, “MoS2 Nanosheets with Widened Interlayer Spacing for High-Efficiency Removal of Mercury in Aquatic Systems,” Adv. Funct. Mater., vol. 26, no. 30, pp. 5542–5549, 2016.
    [72] Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, “Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films,” Sci. Rep., vol. 3, pp. 1–6, 2013.
    [73] M. Acerce, D. Voiry, and M. Chhowalla, “Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials,” Nat. Nanotechnol., vol. 10, no. 4, pp. 313–318, 2015.
    [74] H. Wang, Z. Lu, S. Xu, D. Kong, J. J. Cha, G. Zheng, P.-C. Hsu, K. Yan, D. Bradshaw, F. B. Prinz, and Y. Cui, “Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction,” Proc. Natl. Acad. Sci., vol. 110, no. 49, pp. 19701–19706, 2013.
    [75] H. Wang, Z. Lu, J. Sun, T. M. Hymel, and Y. Cui, “Electrochemical Tuning of MoS2 Nanoparticles on Three-Dimensional Substrate for Efficient Hydrogen,” ACS Nano, vol. 8, no. 5, pp. 4940–4947, 2014.
    [76] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, pp. 2–5, 2010.
    [77] L. Sun, J. Li, C. Wang, S. Li, Y. Lai, H. Chen, and C. Lin, “Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity,” J. Hazard. Mater., vol. 171, no. 1–3, pp. 1045–1050, 2009.
    [78] F. Xiao, “Layer-by-Layer Self-Assembly Construction of Highly Ordered Metal- TiO 2 Nanotube Arrays Heterostructures ( M / TNTs , M = Au , Ag , Pt ) with Tunable Catalytic Activities,” J. Phys. Chem. C, vol. 116, pp. 16487–16498, 2012.
    [79] Z. Chen, L. Fang, W. Dong, F. Zheng, M. Shen, and J. Wang, “Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity,” J. Mater. Chem. A, vol. 2, no. 3, p. 824, 2014.
    [80] K. H. Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, “Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2photocatalyst for degradation of endocrine disturbing compounds,” Appl. Surf. Sci., vol. 319, no. 1, pp. 128–135, 2014.
    [81] W. Peng, X. Wang, and X. Li, “The synergetic effect of MoS2 and graphene on Ag3PO4 for its ultra-enhanced photocatalytic activity in phenol degradation under visible light,” Nanoscale, vol. 6, no. 14, p. 8311, 2014.
    [82] Q. Xiang, J. Yu, and M. Jaroniec, “Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles,” pp. 23–26, 2012.
    [83] Y. Zhang, Z.-R. Tang, X. Fu, and Y.-J. Xu, “TiO 2 −Graphene Nanocomposites for Gas-Phase Photocatalytic Degradation of Volatile Aromatic Pollutant: Is TiO 2 −Graphene Truly Different from Other TiO 2 −Carbon Composite Materials?,” ACS Nano, vol. 4, no. 12, pp. 7303–7314, 2010.
    [84] Q. Li, B. D. Guo, J. G. Yu, J. R. Ran, B. H. Zhang, H. J. Yan, and J. R. Gong, “Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets,” J. Am. Chem. Soc., vol. 133, no. 28, pp. 10878–10884, 2011.

    下載圖示 校內:立即公開
    校外:2020-08-14公開
    QR CODE