簡易檢索 / 詳目顯示

研究生: 劉威廷
Liou, Wei-Ting
論文名稱: 以快速凝固霧化法及無電鍍法製作 Mg-Cu-Gd/Ag金屬玻璃基複合材料及其塊材性質探討
Study of the properties of the Mg-Cu-Gd/Ag Bulk Metallic Glass Composites Synthesized by Rapid-Solidifying Atomization and Electroless Plating
指導教授: 曹紀元
Tsao, Chi-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 127
中文關鍵詞: 快速凝固霧化法金屬玻璃基複合材非晶質無電鍍銀鍍層密度背向式擠型銀含量韌性
外文關鍵詞: RSA, BMGCs, amorphous, silver electroless plating, density of coating layer, backward extrusion, the contnet of Ag, toughness
相關次數: 點閱:114下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究使用具有快速冷卻效果的¬氣體霧化法及無電鍍法來製備Mg-Cu-Gd/Ag金屬玻璃複合粉末。目前利用設計一粉末收集容器,其粉末收集率可達到63%。所霧化出的Mg-Cu-Gd粉末粒徑主要約為40~70μm。利用X光繞射分析(XRD)來檢測所霧化出的粉末之結構為非晶質材料。熱差式掃描分析(DSC)檢測此材料之玻璃轉換溫度與結晶溫度,而等溫熱差式掃描分析用來決定此材料在不同持溫溫度的結構鬆弛時間。掃描式(SEM)顯微鏡以及感應耦合電漿質譜儀(ICP)觀察其微結構及化學組成,其組成為Mg66.2Cu24.3Gd9.5。接著以無電鍍銀技術製作金屬玻璃複合粉末。研究中對無電鍍銀的參數進行最佳化的探討,並成功製備出金屬玻璃複合粉末,選擇三種不同鍍層密度的粉末來探討其對機械性質的影響。而塊材的製備則先將粉末以熱壓的方式預成型,接著進行以擠型比為9及36的背向式擠型來得到直徑3mm的塊材。壓縮方面,進行應變速率為5×10-4 s-1下,得到此金屬玻璃基複合材料之壓縮應力應變曲線,此材料之壓縮強度最大為843 MPa。最後發現經過無電鍍銀表面處理後,越高的鍍層密度的確有助於提高複合材料之韌性。

    The Mg-Cu-Gd/Ag metallic glass composite powders was synthesized by the RSA (Rapid-Solidifying Atomization) and silver electroless plating in this research. A container is designed for collect the powders and the collection rate of it now is 63%. The average size of atomized Mg-Cu-Gd metallic glass powders is 40~60 μm. The degree of crystallization and structure was determined by X-Ray differential Scanning analyses, which confirms amorphous structure. Differential Scanning Calorimeter analyses, were performed to establish the glass transition and crystallization temperatures of the atomized Mg-Cu-Gd metallic glass. Isothermal DSC was also performed to determine the incubation times at various temperatures. Microstructures and chemical compositions were characterized and analyses by SEM/EDS and ICP, which has composition of Mg66.2Cu24.3Gd9.5. The best parameters of silver electroless plating were discussed in this research , and the few, uniform and discontinuous coating layers were successfully made, and explored the mechanical properties by choose three kinds of coating density. The BMGCs pre-formation is made by hot press, and then backward extrusion was applied to make the BMGCs with diameter of 3 mm by ratio of 9 and 36. The compressive stress vs. strain relationships of the BMGCs were obtained by compressive testing at various strain rate of 5×10-4 s-1. Finally, it would be helping of increasing the toughness of the BMGCs via the method of electroless plating on surface of powders.

    摘要 I Abstract II 致謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 第1章、 前言 1 第2章、 文獻回顧與理論基礎 4 2-1 塊狀金屬玻璃歷史(Bulk metallic glasses) 4 2-2 金屬玻璃製造方法 5 2-2-1 噴覆成型Spray Forming 5 2-2-2 噴射鑄造 7 2-2-3 薄帶製作 8 2-2-4 粉末冶金製程 9 2-3 玻璃的形成 10 2-4 玻璃形成能力(glass forming ability, GFA) 11 2-5 熱分析理論 12 2-6 無電鍍簡介 13 2-6-1 無電鍍反應機構 15 2-7 田口式實驗設計法與變異數分析 16 2-8 預成型 17 2-9 應力誘發結晶 17 2-10 擠型形式與分析理論 18 2-11 機械性質 19 2-11-1 楊氏系數[51] 19 2-11-2 微硬度 20 2-11-3 室溫壓縮 20 2-11-4 韌性 22 第3章、 實驗步驟與分析參數及條件 23 3-1 以RSA(Rapid Solidifying Atomization)製備Metallic Glass Powders 23 3-2 X光繞射X-Ray diffraction (XRD)之結構鑑定 24 3-3 Differential Scanning Calorimeter (DSC) 24 3-4 SEM/EDS、ICP、EPMA成份鑑定 25 3-5 Mg-Cu-Gd/Ag複合粉末製備 25 3-6 預成型 26 3-7 背向擠型Backward Extrusion 26 3-8 奈米壓痕測試驗機Nanoindenter與微硬度Micro-hardness 27 3-9 壓縮Compression 28 第4章、 結果與討論 29 4-1 RSA(Rapid Solidifying Atomization)製作之Metallic Glass Powders及其性質 29 4-1-1 Metallic Glass Powders之收集 29 4-1-2 粒徑分佈 29 4-1-3 粉末外觀與金相 29 4-1-3 EDS與ICP成份鑑定及金相觀察 30 4-1-4 XRD之結構鑑定 30 4-1-5 DSC、結晶活化能及玻璃形成能力參數 30 4-2 Mg63Cu28Gd8金屬玻璃粉末無電鍍銀探討 32 4-2-1 鍍層型態 32 4-2-2 鍍層密度 32 4-2-3 變異數分析與參數最佳化 33 4-2-3-1 硝酸銀濃度 33 4-2-3-2 析鍍時間 34 4-2-3-3 攪拌速率 34 4-3 Mg66.2Cu24.3Gd9.5/Ag 複合粉末之熱壓 35 4-4 Mg66.2Cu24.3Gd9.5/Ag 複合材料之擠型 35 4-5 楊氏系數 38 4-6 MHv 38 4-7 壓縮試驗 39 第5章、 結論 41 引用文獻 44

    1. Inoue, Akihisa, Tao Zhang, and Tsuyoshi Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990. 31(3) p. 177-183.
    2. Ashby, M. F. and A. L. Greer, Metallic glasses as structural materials. Scripta Materialia, 2006. 54(3): p. 321-326.
    3. Zheng, Qiang, Jian Xu, and Evan Ma, High glass-forming ability correlated with fragility of Mg--Cu(Ag)--Gd alloys. Journal of Applied Physics, 2007. 102(11) p. 113519-5.
    4. Xu, Ying-Kun, Han Ma, Jian Xu, and En Ma, Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Materialia, 2005. 53(6) p. 1857-1866.
    5. 陳海明, 鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質. 2006國立中山大學材料科學研究所碩士論文.
    6. Jason S.-C. Jang, , , S.-R. Jian, T.-H. Li, J.C. Huang, Chi Y.-A. Tsao and C.-T. Liu, Structural and mechanical characterizations of ductile Fe particles-reinforced Mg -based bulk metallic glass composites. Journal of Alloys and Compounds, 2009 458(1-2) p. 290-294.
    7. H. Ma, J. Xu and E. Ma, Mg-based bulk metallic glass composites with plasticity and high strength . Applied Physics Letters, 2003 83(14) :p.2793-2795
    8. J.S.C. Jang , , T.H. Li, S.R. Jian, J.C. Huang and T.G. Nieh, Effects of characteristics of Mo dispersions on the plasticity of Mg -based bulk metallic glass composites. Intermetallics, 2011. 19(5) p. 738-743.
    9. Makoto Kinaka, Hidemi Kato, Masashi Hasegawa, Akihisa Inoue, High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid. Journal of Materials Science and Engineering, 2008. 494 p. S299-S303.
    10. P. Duwez, R. H. Willens and W. Klement, Thermophysical properties of bulk metallic glass-forming liquids, Nature, 1960. vol.187 p.869-870.
    11. H. S. Chen and C. E. Miller, A Rapid Quenching Technique for the Preparation of Thin Uniform Films of Amorphous Solids, Rev. Sci. Instrum, 1970. vol.41, p.1237-1238.
    12. Chen, H. S., Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metallurgica, 1974. 22(12): p. 1505-1511.
    13. Inoue., A., A. Kato., T. Zhang., S. G. Kim., and T. Masumoto., Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Materials Transactions, JIM, 1991. 32(7): p. 609-616.
    14. Xi, X. K., D. Q. Zhao, M. X. Pan, and W. H. Wang, On the criteria of bulk metallic glass formation in MgCu-based alloys. Intermetallics, 2005. 13(6): p. 638-641.
    15. Yuan, Guangyin and Akihisa Inoue, The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg-Cu-Gd metallic glass alloys. Journal of Alloys and Compounds, 2005. 387(1-2): p. 134-138.
    16. Chang, L. J., J. S. C. Jang, B. C. Yang, and J. C. Huang, Crystallization and thermal stability of the Mg65Cu25-xGd10Agx (x??-10) amorphous alloys. Journal of Alloys and Compounds, 2007. 434-435: p. 221-224.
    17. Soubeyroux, J. L., S. Puech, P. Donnadieu, and J. J. Blandin, Synthesis and mechanical behavior of nanocomposite Mg-based bulk metallic glasses. Journal of Alloys and Compounds, 2007. 434-435: p. 84-87.
    18. Zheng, Q., S. Cheng, J. H. Strader, E. Ma, and J. Xu, Critical size and strength of the best bulk metallic glass former in the Mg-Cu-Gd ternary system. Scripta Materialia, 2007. 56(2): p. 161-164.
    19. Akihisa Inoue, Tao Zhang, and Tsuyoshi Masumoto, Al-La-Ni Amorphous Alloys with a Wide Supercooled Liquid Region Materials Transactions, JIM, 1989. 30(12): p. 965-972.
    20. Lee, S. Y., T. S. Kim, J. K. Lee, H. J. Kim, D. H. Kim, and J. C. Bae, Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders. Intermetallics. 14(8-9): p. 1000-1004.
    21. Hufnagel, T. C., T. Jiao, Y. Li, L.-Q. Xing, and K. T. Ramesh, Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. Materials Research Society, 2002. 17(6).
    22. Keryvin, V., V. H. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
    23. Huang, Y. J., J. Shen, Y. L. Chiu, J. J. J. Chen, and J. F. Sun, Indentation creep of an Fe-based bulk metallic glass. Intermetallics, 2009. 17(4): p. 190-194.
    24. Akihisa Inoue, Nobuyuki Nishiyama, and Takayuki Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching. Materials Transactions, JIM, 1996. 37(2): p. 181-184.
    25. Men, H., W. T. Kim, and D. H. Kim, Glass formation and crystallization behavior in Mg65Cu25Y10-xGdx (x=0, 5 and 10) alloys. Journal of Non-Crystalline Solids, 2004. 337(1): p. 29-35.
    26. G. Yuan,K. Amiya, A. Inoue, Structural relaxation, glass-forming ability and mechanical properties of Mg–Cu–Ni–Gd alloys, Journal of Non-Crystalline Solids. 2005. 351(1-2): p.729-735.
    27. 吳學陞, 工業材料, 1999. 149: p. 154-165.
    28. B.G. Ravi and R. Chaim, Sintering of Bimodal Alumina Powder Mixtures with a Nanocrystalline component, Acta Metallurgica 1999 11(7) :p.853-859.
    29. Lu, Z. P. and C. T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
    30. Jan Schroers, Processing of Bulk Metallic Glass, Adv. Mater. 2010(20) :p1567
    31. Du, X. H., J. C. Huang, C. T. Liu, and Z. P. Lu, New criterion of glass forming ability for bulk metallic glasses. Journal of Applied Physics, 2007. 101(8): p. 086108.
    32. Tanaka, Hajime, Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. Journal of Non-Crystalline Solids, 2005. 351(8-9): p. 678-690.
    33. Ted Guo, M. L., Chi Y. A. Tsao, J. C. Huang, and J. S. C. Jang, Crystallization behavior of spray-formed and melt-spun Al89La6Ni5 hybrid composites with amorphous and nanostructured phases. Materials Science and Engineering: A, 2005. 404(1-2): p. 49-56.
    34. 張中良, 非導體表面隻金屬化, 工業材料雜誌, 1996. 112: pp.86-92.
    35. 神戶德藏著, 莊萬發譯著, 無電解鍍金, 復漢出版社印行, 1989.
    36. G.O. Mallory and J.B. Hajdu, Electroless Plating:Fundamentals and Applications, AESF, 1990,Chap.1.
    37. Russev, Dimiter, Radev, Dimitet, Karaivanov, Stefan, Immersion Silvering of Copper, Metal Finishing. 1983. 81(1) :p.27-30.
    38. 楊聰仁, 無電解電鍍鎳研究與應用現況, 工業材料, 1995. 106期, pp.118-123.
    39. 莊萬發, 無電解鍍金-化學鍍金技術, 復漢出版社, 1996.
    40. 林士傑, 應用無電解電鍍與電泳技術於玻璃基板沉積研究, 國立中山大學, 2006.
    41. Xinrui Xu, Xiaojun Luo, Hanrui Zhuang, Wenlan Li, Baolin Zhang, Electroless silver coating on fine copper powder and its effects on oxidation resistance, Materials Letters 2003(57) :p3987-3991.
    42. 李輝煌, 田口方法(Taguchi Methods)品質設計的原理與實務, 高立圖書有限公司, 2000.
    43. 田口玄一, 吉澤政孝, 田口是品質工程講座(一)開發設計階段的品質工程, 中國生產力中心, 1990.
    44. 田口玄一, 山本昌吳, 田口是品質工程講座(二)製造階段的品質工程, 中國生產力中心, 1991.
    45. 田口玄一, 小西省三, 田口是品質工程講座(三)品質評價的S/N比, 中國生產力中心, 1991.
    46. 田口玄一, 橫山巽子, 田口是品質工程講座(一)品質設計的實驗計畫法, 中國生產力中心, 1995.
    47. MIT press, Michael B. Bever, Encyclopedia of Materials Science and Engineering, 1991 p.2202-2209.
    48. Chang, Y. C., T. H. Hung, H. M. Chen, J. C. Huang, T. G. Nieh, and C. J. Lee, Viscous flow behavior and thermal properties of bulk amorphous Mg58Cu31Y11 alloy. Intermetallics, 2007. 15(10): p. 1303-1308.
    49. Schuh, C. A. and A. C. Lund, Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003. 2(7): p. 449-452.
    50. Hajlaoui, K., A. R. Yavari, B. Doisneau, A. LeMoulec, W. J. Botta F, G. Vaughan, A. L. Greer, A. Inoue, W. Zhang, and A. Kvick, Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis. Scripta Materialia, 2006. 54(11): p. 1829-1834
    51. Oliver, W.C., and Pharr, G.M., 1992, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J.Mater. Res., 7, pp. 1564-83.
    52. Inoue, Akihisa, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
    53. Chen, F. H., K. F. Chang, Chi Y. A. Tsao, M. L. T. Guo, J. C. Huang, and J. S. C. Jang, Microstructures and mechanical behaviors of Mg58Cu31Gd11 and Mg65Cu25Gd10 amorphous alloys synthesized by injection casting and melt spinning. Journal of Alloys and Compounds, 2009. 483(1-2): p. 32-36.
    54. Hsieh, P. J., S. C. Lin, H. C. Su, and J. S. C. Jang, Glass forming ability and mechanical properties characterization on Mg58Cu31Y11-xGdx bulk metallic glasses. Journal of Alloys and Compounds, 2009. 483(1-2): p. 40-43.
    55. Spaepen, Frans, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.

    下載圖示 校內:2016-09-09公開
    校外:2016-09-09公開
    QR CODE