| 研究生: |
楊晉昌 Yang, Chin-Chang |
|---|---|
| 論文名稱: |
創新的差分進化演算法及其有效的應用於相機RAW影像雜訊去除與制限最小最大最佳化問題 A Novel Differential Evolution and Its Effective Applications to Camera Raw Image Denoising and Constrained Min-Max Optimization Problems |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 差分進化 、最佳化 、影像濾波器 、雜訊去除 、制限最小最大最佳化 、穩固設計 |
| 外文關鍵詞: | Differential evolution, optimization, image filtering, image denoising, constrained min-max optimization, robust design |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,影像設備不斷地在進步,相機可拍攝的彩色影像畫素數量變得愈來愈多,然而,隨著單一像素愈做愈小,影像感測器的輸出訊號對光學雜訊的敏感度也愈來愈大,因此濾除雜訊成為影像處理最重要的議題之一,如何使用差分進化演算法設計一個有效適用於相機RAW影像的最佳雜訊抑制演算法,是本論文的第一個重點。
真實世界的最佳化往往存在著無法避免的不確定性,全域最佳解的性能對參數的微小變化很可能是非常敏感的,因此,真正要找的解是一個具有高容錯率且高穩定性的最穩解,而不是傳統的全域最佳解。本論文對於最穩解的定義是在不確定性影響最嚴厲情況下的最佳解,它可由一個制限最小最大最佳化問題所描述,而如何使用差分進化演算法有效地找出最穩解,是本論文的第二個重點。
針對以上兩個重點,本論文提出四個重要的議題進行探討。第一,提出基於特徵向量的交配運算子解決差分進化演算法性能對座標軸系統旋轉敏感的問題。第二,提出成功母體選擇法解決差分進化演算法在高維度多峰目標函數中容易停止收斂的問題。第三,探討實際相機取得的RAW影像的雜訊模型及雜訊抑制方法,並使用差分進化演算法設計一個基於模糊方塊配對之相機RAW影像雜訊去除演算法。最後,探討並提出制限最小最大最佳化問題的定義及定理,並提出一種限制啟動型的差分進化演算法解決制限最小最大最佳化問題。
差分進化演算法是解決連續空間全域最佳化問題最有效的方法之一,然而差分進化演算法的性能對於座標軸系統的旋轉是非常敏感的,尤其是在高條件數的目標函數下,差分進化演算法的性能更是明顯變差。因此本論文提出基於特徵向量的交配運算子來增強差分進化演算法的性能,透過候選解的共變異矩陣的特徵向量,使原本不具旋轉不變性的交配運算子具有旋轉不變性,解決了差分進化演算法敏感於座標軸系統旋轉的問題。並且提出的性能提升框架可以套用於任一種交配運算子上,只須極小的修改就可以運作。實驗結果證實提出的基於特徵向量之交配運算子在不可切割單峰函數上明顯地提升了差分進化演算法的性能,而在標準測試函數上,其整體平均性能亦有顯著提升。
其次,差分進化演算法的性能在高維度多峰複雜函數容易發生停滯問題,在問題發生時,差分進化演算法無法將解收斂到一個點上,也無法再找到更好的解。針對此問題,本論文提出成功母體選擇法來提升差分進化演算法的性能,在演化過程中儲存最近更新的解作為替代的母體,給予連續多次未更新的解一個重新選擇的機會,使母體的選擇來源不只是候選解本身,還多了替代的母體可供選擇。提出的成功母體選擇法可以套用於任何一種差分進化演算法,並且幫助差分進化演算法脫離停滯的狀態。實驗結果也顯示提出的演算法加快了差分進化演算法的收斂速度,也增快了候選解的更新頻率,更重要的是,提出的演算法幾乎在所有標準測試函數上都顯著地提升了差分進化演算法的性能,而整體平均性能更是有明顯的提升。
在應用的部分,將針對相機RAW影像雜訊去除進行討論。近年來,許多影像濾波器的研究假設影像雜訊是獨立且相同的高斯分佈,但事實上,光學雜訊的變異數和訊號強度經常呈現正相關性,而且影像感測器的排列設計也會影響雜訊的變異數。因此,本論文針對未處理過的RAW影像,提出基於模糊方塊配對之影像雜訊去除演算法將影像雜訊去除,提出的模糊方塊配對法尋找相似的方塊進行加權平均運算,此加權數由一個模糊邏輯系統給定,並利用變化穩定轉換法將雜訊變異數穩定化,使提出的方法在明亮與陰暗的區域都有優良的雜訊去除性能,最後使用本論文改良的差分進化演算法進一步提升模糊方塊配對法的性能。實驗結果顯示提出的演算法可有效地提升影像去雜訊的性能,其濾波結果在主觀視覺與客觀數據上皆優於兩個文獻上嶄新的影像去雜訊演算法。
最後,真實世界往往含有不確定性,由模擬實驗設計的最佳系統不一定適用於變化劇烈的真實世界,為了解決不確定性的問題,在設計階段就得考慮最穩解,而最穩解的尋找可以描述為一個制限最小最大最佳化問題。本論文提出制限最小最大最佳化問題的定義與定理,證明不論是最小最大化問題還是最大最小化問題,都可用最小最大化演算法解決,基於此定理,本論文提出一種限制啟動型差分進化演算法尋找最穩解,提出的演算法主要是透過直接尋找最靠近限制式邊界的解,大幅提升搜尋最穩解的效率。實驗結果顯示,在誤差小於1E–6的成功率評比下,提出的演算法在五個數值測試基準上皆表現出100%的成功率。
Recently, with the rapid advance of imaging devices, there are more and more pixels in a color image taken by a camera. However, the sensitivity of image sensor output signals to photon noise has become greater with the smaller size of each pixel. Therefore, denoising becomes one of the most important issue in image processing. How to design an optimal denoising algorithm by differential evolution for camera raw images is the first application in this dissertation.
Uncertainties are often occurred and unable to avoid in real-world optimization scenarios. The global optimum might be very sensitive to small variations in parameters. Therefore, a preferable solution is probably not the global optimum, but one with high tolerance and robustness to uncertainties. In this dissertation, the most robust solution is defined under the best possible worst-case performance, which can be described by a constrained min-max optimization problem. How to use differential evolution to effectively find the most robust solution is the second application in this dissertation.
Four topics are studied in this dissertation. First, an eigenvector-based crossover operator is proposed to solve the problem of differential evolution of which the performance is sensitive to the rotation of coordinate systems. Second, a successful-parent-selecting framework is proposed to solve the stagnation problem of differential evolution in high-dimensional multimodal objective functions. Third, with the analysis of the noise model and denoising method for raw images acquired by a digital camera, the differential evolution is used to design a fuzzy block-matching based denoising algorithm for camera raw image restoration. Finally, the definition and theorem of the constrained min-max optimization problem are specified and proposed, and a constraint-activated differential evolution is proposed to solve the constrained min-max optimization problem.
In the first topic, differential evolution is one of the most effective method to solve global optimization problems in continuous search domain. However, the performance of differential evolution is sensitive to the rotation of coordinate systems especially when the objective function is with high-conditioning. The performance of differential evolution may decrease dramatically. Therefore, an eigenvector-based crossover operator is proposed to enhance the performance of differential evolution. The eigenvector information of the covariance matrix of the solutions is utilized to make the crossover operator become rotationally invariant, and solves the sensitivity problem on the rotation of coordinate systems. The proposed operator can be applied to any crossover strategy with minimal changes. The experimental results show that the proposed eigenvector-based crossover significantly enhances the performance of differential evolution on non-separable unimodal functions. In standard test functions, the proposed operator also significantly improves the overall performance of differential evolution.
The stagnation problem of differential evolution is discussed in the second topic. When stagnation is happening, differential evolution cannot converge solutions to a fixed point, and the algorithm cannot find any better solutions. To solve this problem, a successful-parent-selecting framework is proposed to improve the performance of differential evolution. During evolution, recently updated solutions are stored into an alternative set of parents, which provides a solution, which is continuously not updated for more than unacceptable times, an alternative selection of parents. The proposed successful-parent-selecting framework can be applied to any differential evolution, and effectively helps the algorithm escaping the situation of stagnation. The simulation results show that the proposed framework accelerates the convergence speed of differential evolution, and increases the update rate of solutions. In addition, the proposed framework significantly improves the performance of differential evolution in terms of Wilcoxon rank-sum test on almost all standard test functions. The overall performance is also increased significantly.
Image denoising in practical cases is discussed in the third topic. Recently, many studies on image denoising assume image noise is a sequence of independent and identical distributed random variables which follow a Gaussian distribution. However, in fact, the variance of photon noise depends on the magnitude of signal. In addition, the arrangement design of image sensors also affects the noise variance. Therefore, an image denoising algorithm should be designed for an RAW image. In this dissertation, a fuzzy block-matching based image denoising algorithm is proposed to remove noise from an RAW image. The proposed block-matching finds similar blocks by the use of a fuzzy logic system. Then, these similar blocks are averaged with the weightings which are determined by the fuzzy logic system. A variance stabilization transform is used to stabilize the noise variance, and thus make the proposed method suitable to eliminate noise for both of bright and dark regions. Finally, the proposed differential evolution is used to further improve the performance of the proposed denoising algorithm. The experimental results show that the proposed denoising algorithm effectively improves the performance of image denoising. Furthermore, the average performance of the proposed method is better than those of two state-of-the-art image denoising algorithms in subjective and objective measure.
Finally, an optimal system which is designed from simulated environment might not be optimal in real world with uncertainties. To deal with the uncertainties, the most robust solution should be considered in design level, and it can be described as a constrained min-max optimization problem. To provide theoretical understanding of this problem, the desired solution is specified in the proposed definition. Based on the definition, a theorem is proposed to prove that a min-max algorithm can be used to solve a max-min problem without any algorithmic changes. Based on the theorem, a constraint-activated differential evolution is proposed to solve the constrained min-max optimization problem. The proposed constraint activation directly finds a solution which can best activate constraints to improve efficiency on finding a robust solution. The simulation results show that the proposed method attains 100% success rate on all of the five numerical benchmarks in terms of 1E–6 solution error.
[1] R. Storn and K. V. Price, “Differential evolution–A simple and efficient heuristic for global optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341-359, 1997.
[2] R. Storn and K. V. Price, “Differential evolution–A simple and efficient adaptive scheme for global optimization over continuous spaces,” ICSI, USA, Tech. Rep. TR-95-012, 1995.
[3] R. Storn, K. V. Price and J. Lampinen, Differential evolution–A practical approach to global optimization, Berlin, Germany: Springer-Verlag, 2005.
[4] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms, New York: Oxford University Press, 1996.
[5] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. 3th ed., Springer, 1998.
[6] K. D. Jong, Evolutionary Computation. A Unified Approach, Cambridge: MA: MIT Press, 2006.
[7] Q. Su, Z. H. Z. Huang and X. Wang, “Binarization algorithm based on differential evolution algorithm for gray images,” 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 2611-2615, 2012.
[8] S. M. Guo, B. W. Lai, Y. C. Chou and C. C. Yang, “Novel wavelet-based image interpolations in lifting structures for image resolution enhancement,” J. Electron. Imaging., vol. 20, no. 3, pp. 033007-033007-22, 2011.
[9] S. M. Guo and C. C. Yang, “Fuzzy similarity measure-based hybrid image filter for color image restoration: multimethodology evolutionary computation,” J. Electron. Imaging., vol. 20, no. 3, pp. 033015-033015-18, 2011.
[10] P. Ghosh, S. Das and H. Zafar, “Adaptive-differential-evolution-based design of two-channel quadrature mirror filter banks for sub-band coding and data transmission,” IEEE Trans. Syst. Man Cybern. Part C, Appl. Rev., vol. 42, no. 6, pp. 1613-1623, 2012.
[11] S. M. Guo, L. S. Shieh, G. Chen and N. P. Coleman, “Observer-type Kalman innovation filter for uncertain linear systems,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, pp. 1406-1418, 2001.
[12] S. M. Guo, L. S. Shieh, C. F. Lin and N. P. Coleman, “Evolutionary-programming-based Kalman filter for discrete time nonlinear uncertain systems,” Asian J. Control, vol. 3, pp. 319-333, 2001.
[13] G. W. Greenwood, “Using differential evolution for a subclass of graph theory problems,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1190-1192, Oct. 2009.
[14] D. Koloseni, J. Lampinen and P. Luukka, “Optimized distance metrics for differential evolution based nearest prototype classifier,” Expert Syst. Appl., vol. 39, no. 12, pp. 10564-10570, 2012.
[15] K.-J. Kim and S.-B. Cho, “An evolutionary algorithm approach to optimal ensemble classifiers for DNA microarray data analysis,” IEEE Trans. Evol. Comput., vol. 12, no. 3, pp. 377-388, 2008.
[16] J.-S. Jang and J.-H. Kim, “Fast and robust face detection using evolutionary pruning,” IEEE Trans. Evol. Comput., vol. 12, no. 5, pp. 562-571, Oct. 2008.
[17] S. Das and P. N. Suganthan, “Differential evolution: A survey of the state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4-31, Feb. 2011.
[18] R. Storn and K. V. Price, “Minimizing the real functions of the ICEC 1996 contest by differential evolution,” in Proc. IEEE Int. Conf. Evol. Comput., 1996, pp. 842-844.
[19] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari, “Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization,” Nanyang Technol. Univ., Singapore, Tech. Rep., IIT Kanpur, Kanpur, India, KanGAL Rep. #2005005, 2005.
[20] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen and Z. Yang, “Benchmark functions for the CEC’2008 special session and competition on large scale global optimization,” Nature Inspired Computation and Applications Laboratory, USTC, China, 2007.
[21] J. Derrac, S. García, D. Molina and F. Herrera, “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput., vol. 1, no. 1, pp. 3-18, May 2011.
[22] S. Das and P. N. Suganthan, “Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems,” Jadavpur Univ., Kolkata, India, and Nanyang Technol. Univ., Singapore, 2010.
[23] J. J. Liang, B. Y. Qu, P. N. Suganthan and A. G. Hernandez-Diaz, “Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization,” Zhengzhou Univ., China, and Nanyang Technol. Univ., Singapore, Jan. 2013.
[24] J. J. Liang, B. Y. Qu and P. N. Suganthan, “Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization,” Zhengzhou Univ., China, and Nanyang Technol. Univ., Singapore, Dec. 2013.
[25] N. Hansen and S. Kern, “Evaluating the CMA evolution strategy on multimodal test functions,” Parallel Problem Solving from Nature-PPSN VIII, X. Yao, Ed. Et al. Berlin, Germany: Springer, 2004, vol. LNCS 3242, pp. 282-291.
[26] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution algorithm,” in Proc. 6th Int. Mendel Conf. Soft Comput., P. Ošmera, Ed., 2000, pp. 76-83.
[27] J. Brest, S. Greiner, B. Bošković, M. Mernik and V. Žumer, “Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646-657, Dec. 2006.
[28] J. Zhang and A. Sanderson, “JADE: Adaptive differential evolution with optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, Oct. 2009.
[29] S. M. Islam, S. Das, S. Ghosh, S. Roy and P. N. Suganthan, “An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 42, no. 2, pp. 482-500, Apr. 2012.
[30] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos and M. N. Vrahatis, “Enhancing differential evolution utilizing proximity-based mutation operators,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 99-119, Feb. 2011.
[31] A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolution algorithm with strategy adaptation for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 398-417, Apr. 2009.
[32] B. Dorronsoro and P. Bouvry, “Improving classical and decentralized differential evolution with new mutation operator and population topologies,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 67-98, Feb. 2011.
[33] Y. Wang, Z. Cai and Q. Zhang, “Differential evolution with composite trial vector generation strategies and control parameters,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 55-66, Feb. 2011.
[34] R. Mallipeddi, P. N. Suganthan, Q. K. Pan and M. F. Tasgetiren, “Differential evolution algorithm with ensemble of parameters and mutation strategies,” Appl. Soft. Comput., vol. 11, no. 2, pp. 1679-1696, May 2011.
[35] E. Mezura-Montes, J. Velázquez-Reyes and C. A. C. Coello, “A comparative study of differential evolution variants for global optimization,” in Proc. Genetic Evol. Comput. Conf., Seattle, WA, 2006, pp. 485-492.
[36] K. V. Price, “An introduction to differential evolution,” in New Ideas in Optimization, London, McGraw-Hill, 1999, pp. 79-108.
[37] K. V. Price, “Eliminating drift bias from the differential evolution algorithm,” in Advances in Differential Evolution, Berlin, Springer, 2008, pp. 33-88.
[38] S. Das, A. Abraham, U. K. Chakraborty and A. Konar, “Differential evolution using a neighborhood-based mutation operator,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 526-553, Jun. 2009.
[39] R. Tanabe and A. Fukunaga, “Success-history based parameter adaptation for differential evolution,” in Proc. IEEE Congr. Evol. Comput., Cancún, México, 2013, pp. 71-78.
[40] R. Tanabe and A. Fukunaga, “Evaluating the performance of SHADE on CEC 2013 benchmark problems,” in Proc. IEEE Congr. Evol. Comput., Cancún, México, 2013, pp. 1952-1959.
[41] A. Foi, M. Trimeche, V. Katkovnik and K. Egiazarian, “Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737-1754, Oct. 2008.
[42] A. J. Blanksby, M. J. Loinaz, D. A. Inglis and B. D. Ackland, “Noise performance of a color CMOS photogate image sensor,” in Proc. IEEE Int. Electron Devices Meet. Dig., 1997, pp. 205-208.
[43] J. Mairal, F. Bach, J. Ponce, G. Sapiro and A. Zisserman, “Non-local sparse models for image restoration,” in Proc. IEEE Int. Conf. Comput. Vis., Tokyo, Japan, 2009, pp. 2272-2279.
[44] V. Katkovnik, A. Foi, K. Egiazarian and J. Astola, “From local kernel to nonlocal multiple-model image denoising,” Int. J. Comput. Vis., vol. 86, no. 1, pp. 1-32, Jan. 2010.
[45] D. Zoran and Y. Weiss, “From learning models of natural image patches,” in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 479-486.
[46] M. Makitalo and A. Foi, “Optimal inversion of the Anscombe transformation in low-count Poisson image denoising,” IEEE Trans. Image Process., vol. 20, no. 1, pp. 99-109, Jan. 2011.
[47] M. Makitalo and A. Foi, “Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 91-103, Jan. 2013.
[48] M. Makitalo and A. Foi, “A closed-form approximation of the exact unbiased inverse of the Anscombe variance-stabilizing transformation,” IEEE Trans. Image Process., vol. 20, no. 9, pp. 2697-2698, Sep. 2011.
[49] W. Dong, L. Zhang, G. Shi and X. Li, “Nonlocally centralized sparse representation for image restoration,” IEEE Trans. Image Process., vol. 22, no. 4, pp. 1620-1630, Apr. 2013.
[50] K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, “Image denoising by sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.
[51] T. Basar, G. J. Olsder, G. J. Clsder, T. Basar, T. Baser and G. J. Olsder, Dynamic noncooperative game theory, vol. 200, London: Academic press, 1995.
[52] J. W. Herrmann, “A genetic algorithm for minimax optimization problems,” in Evolutionary Computation, 1999. CEC 99, Proceedings of the 1999 Congress on (Vol. 2), IEEE, 1999.
[53] Y. Shi and R. A. Krohling, “Co-evolutionary particle swarm optimization to solve min-max problems,” in Evolutionary Computation, 2002, CEC'02, Proceedings of the 2002 Congress on, IEEE, 2002, pp. 1682-1687.
[54] J. Hur, H. Lee and M. J. Tahk, “Parameter robust control design using bimatrix co-evolution algorithms,” Engineering Optimization, vol. 35, no. 4, pp. 417-426, 2003.
[55] M. T. Jensen, “A new look at solving minimax problems with coevolutionary genetic algorithms,” in Metaheuristics: Computer Decision-Making (pp. 369–384). Springer US, 2004, pp. 369-384.
[56] A. M. Cramer, S. D. Sudhoff and E. L. Zivi, “Evolutionary algorithms for minimax problems in robust design,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp. 444-453, 2009.
[57] M. Á. Sainz, P. Herrero, J. Armengol and J. Vehí, “Continuous minimax optimization using modal intervals,” Journal of Mathematical Analysis and Applications, vol. 339, no. 1, pp. 18-30, 2008.
[58] B. Lu, Y. Cao, M. jie Yuan and J. Zhou, “Reference variable methods of solving min–max optimization problems,” Journal of Global Optimization, vol. 42, no. 1, pp. 1-21, 2008.
[59] G. A. Segundo, R. A. Krohling and R. C. Cosme, “A differential evolution approach for solving constrained min–max optimization problems,” Expert Systems with Applications, vol. 39, no. 11, pp. 13440-13450, 2012.
[60] D. Khashabi, S. Nowozin, J. Jancsary and A. W. Fitzgibbon, “Joint demosaicing and denoising via learned nonparametric random fields,” IEEE Trans. Image Process., vol. 23, no. 12, pp. 4968-4981, Dec. 2014.
[61] S. M. Guo and C. C. Yang, “Enhancing differential evolution utilizing eigenvector-based crossover operator,” IEEE Trans. Evol. Comput., to be published, 2013.
[62] Y.-S. Ong, P. B. Nair and K. Y. Lum, “Max–min surrogate-assisted evolutionary algorithm for robust design,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 392-404, Aug. 2006.
[63] I. Paenke, J. Branke and Y. Jin, “Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation,” IEEE Trans. Evol. Comput., vol. 10, no. 4, pp. 405-420, Aug. 2006.
[64] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proceedings of IEEE International Conference on Computer Vision, 1998, pp. 839-846.
[65] V. Katkovnik, K. Egiazarian and J. Astola, Local approximation techniques in signal and image processing, Bellingham: SPIE Press, 2006.
[66] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006.
[67] Z. Liu, S. Xu, C. Chen, Y. Zhang, X. Chen and Y. Wang, “A three-domain fuzzy support vector regression for image denoising and experimental studies,” IEEE T. Cybern., vol. 44, no. 4, pp. 516-525, Apr. 2014.
[68] K. Toh and N. Isa, “Cluster-based adaptive fuzzy switching median filter for universal impulse noise reduction,” IEEE Trans. Consum. Electron., vol. 56, no. 4, pp. 2560-2568, Nov. 2010.
[69] J. Mendel, “General type-2 fuzzy logic systems made simple: A tutorial,” IEEE Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1162-1182, Oct. 2014.
[70] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Information Sciences, vol. 132, no. 1-4, pp. 195-220, Feb. 2001.
[71] D. Wu and J. Mendel, “Enhanced karnik--mendel algorithms,” IEEE Trans. Fuzzy Syst., vol. 17, no. 4, pp. 923-934, Aug. 2009.
[72] N. Hansen, A. Auger, S. Finck and R. Ros, “Real-parameter black-box optimization benchmarking 2012: Experimental setup,” Technical report, INRIA, 2012.
[73] A. Ostermeier, A. Gawelczyk and N. Hansen, “A derandomized approach to self-adaptation of evolution strategies,” Evol. Comput., vol. 2, no. 4, pp. 369-380, 1994.
[74] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation,” in Proc. IEEE Int. Conf. Evol. Comput., Nagoya, Japan, 1996, pp. 312-317.
[75] N. Hansen and A. Ostermeier, “Completely derandomized self-adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp. 159-195, 2001.
[76] N. Hansen, A. S. P. Niederberger, L. Guzzella and P. Koumoutsakos, “A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion,” IEEE Trans. Evol. Comput., vol. 13, no. 1, pp. 180-197, Feb. 2009.
[77] G. Strang and K. Borre, Linear algebra, geodesy, and GPS. Wellesley Cambridge Pr, 1997.
[78] E. W. Weisstein, “Eigen Decomposition,” 19 Jan. 2013. [Online]. Available: http://mathworld.wolfram.com/EigenDecomposition.html.
[79] D. Watkins, “Understanding the QR algorithm,” SIAM Review, vol. 24, no. 4, pp. 427-440, 1982.
[80] J. H. Wilkinson and C. Reinsch, “Handbook for automatic computation,” Linear Algebra, vol. LL, 1993.
[81] J. D. a. K. Veselić, “Jacobi’s method is more accurate than QR,” SIAM. J. Matrix Anal. Appl, vol. 13, no. 4, pp. 1204-1245, Dec. 1990.
[82] S. Ghosh, S. Das, S. Roy, S. K. Minhazul and P. N. Suganthan, “A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization,” Inform. Sci., vol. 182, no. 1, pp. 199-219, Jan. 2012.
[83] A. M. Sutton, M. Lunacek and L. D. Whitley, “Differential evolution and non-separability: Using selective pressure to focus search,” in Proc. 9th Annu. Conf. GECCO, Jul. 2007, pp. 1428-1435.
[84] C. K. Chow and S. Y. Yuen, “An evolutionary algorithm that makes decision based on the entire previous search history,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp. 741-769, Dec. 2011.
[85] G. W. Stewart, “A Jacobi-like algorithm for computing the Schur decomposition of a nonhermitian matrix,” SIAM J. Sci. and Stat. Comput., vol. 6, no. 4, pp. 853-864, Jun. 1984.
[86] S. Rahnamayan, H. R. Tizhoosh and M. M. A. Salama, “Opposition-based differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64-79, Feb. 2008.
[87] H. Wang, Z. Wu and S. Rahnamayan, “Enhanced opposition-based differential evolution for solving high-dimensional continuous optimization problems,” Soft Comput.–A Fusion Found., Methodol. Appl., vol. 15, no. 11, pp. 2127-2140, Nov. 2011.
[88] H. Wang, S. Rahnamayan and S. Zeng, “Generalised opposition-based differential evolution: An experimental study,” Int. J. Comput. Appl. Technol., vol. 43, no. 4, pp. 311-319, Jan. 2012.
[89] Y. Zhou, X. Li and L. Gao, “A novel two-layer hierarchical differential evolution algorithm for global optimization,” in Proc. IEEE Int. Conf. Syst. Man Cybern. (SMC), Manchester, United Kingdom, 2013, pp. 2916-2921.
[90] H. Wang, S. Rahnamayan, H. Sun and M. G. H. Omran, “Gaussian bare-bones differential evolution,” IEEE T. Cybern., vol. 43, no. 2, pp. 634-647, Apr. 2013.
[91] Y. Wang, H. X. Li, T. Huang and L. Li, “Differential evolution based on covariance matrix learning and bimodal distribution parameter setting,” Appl. Soft. Comput., vol. 18, pp. 232-247, May 2014.
[92] Y. Wang, Z. X. Cai and Q. F. Zhang, “Enhancing the search ability of differential evolution through orthogonal crossover,” Inf. Sci., vol. 185, no. 1, pp. 153-177, Feb. 2012.
[93] S. Elsayed, R. Sarker and D. Essam, “Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems,” in Proc. IEEE Congr. Evol. Comput., New Orleans, LA, Jun. 2011, pp. 1041-1048.
[94] J. Brest and M. S. Maučec, “Self-adaptive differential evolution algorithm using population size reduction and three strategies,” Soft Comput.—Fusion Found., Methodol. Appl., vol. 15, no. 11, pp. 2157-2174, Nov. 2011.
[95] Q. K. Pan, P. N. Suganthan, L. Wang, L. Gao and R. Mallipeddi, “A differential evolution algorithm with self-adaptive strategy and control parameters,” Comput. Oper. Res., vol. 38, no. 1, pp. 394-408, Jan. 2011.
[96] W. Y. Gong, Z. H. Cai, C. X. Ling and H. Li, “Enhanced differential evolution with adaptive strategies for numerical optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 2, pp. 397-413, Apr. 2011.
[97] S. Z. Zhao, P. N. Suganthan and S. Das, “Self-adaptive differential evolution with multi-trajectory search for large-scale optimization,” Soft Comput.—Fusion Found., Methodol. Appl., vol. 15, no. 11, pp. 2175-2185, Nov. 2011.
[98] W. Gong, Á. Fialho, Z. Cai and H. Li, “Adaptive strategy selection in differential evolution for numerical optimization: An empirical study,” Inf. Sci., vol. 181, no. 24, pp. 5364-5386, Dec. 2011.
[99] W. Gong, Z. Cai and Y. Wang, “Repairing the crossover rate in adaptive differential evolution,” Appl. Soft. Comput., vol. 15, pp. 149-168, Feb. 2014.
[100] J. Aalto and J. Lampinen, “A mutation adaptation mechanism for differential evolution algorithm,” in Proc. IEEE Congr. Evol. Comput., Cancún, México, Jun. 2013, pp. 55-62.
[101] M. Weber, V. Tirronen and F. Neri, “Scale factor inheritance mechanism in distributed differential evolution,” Soft Comput., Fusion Found. Methodologies Appl., vol. 14, no. 11, pp. 1187-1207, Sep. 2010.
[102] S. M. Elsayed, R. A. Sarker and T. Ray, “Differential evolution with automatic parameter configuration for solving the CEC2013 competition on real-parameter optimization,” in Proc. IEEE Congr. Evol. Comput., Cancún, México, Jun. 2013, pp. 1932-1937.
[103] R. A. Sarker, S. M. Elsayed and T. Ray, “Differential evolution with dynamic parameters selection for optimization problems,” IEEE Trans. Evol. Comput., to be published.
[104] A. Ghosh, S. Das, A. Chowdhury and R. Giri, “An improved differential evolution algorithm with fitness-based adaptation of the control parameters,” Inf. Sci., vol. 181, no. 18, pp. 3749-3765, Sep. 2011.
[105] J. Tvrdík, “Adaptation in differential evolution: A numerical comparison,” Appl. Soft Comput., vol. 9, no. 3, pp. 1149-1155, 2009.
[106] J. Tvrdík, R. Poláková, J. Veselský and P. Bujok, “Adaptive variants of differential evolution: Towards control-parameter-free optimizers,” Handbook of Optimization, ser. Intelligent Systems Reference Library, volume 38, Zelinka, Ivan and Abraham, Ajith and Snasel, Vaclav, Ed. Heidelberg New York Dordrecht London: Springer, 2013, pp. 423-449.
[107] R. Li, L. Xu, X. W. Shi, N. Zhang and Z. Q. Lv, “Improved differential evolution strategy for antenna array pattern synthesis problems,” Progress In Electromagnetics Research, vol. 113, pp. 429-441, 2011.
[108] Y. Cai and J. Wang, “Differential evolution with neighborhood and direction information for numerical optimization,” IEEE T. Cybern., vol. 43, no. 6, pp. 2202-2215, Dec. 2013.
[109] W. Y. Gong and Z. H. Cai, “Differential evolution with ranking-based mutation operators,” IEEE T. Cybern., vol. 43, no. 6, pp. 2066-2081, Dec. 2013.
[110] Y. Lou, J. Li and G. Li, “A differential evolution algorithm based on individual-sorting and individual-sampling strategies,” J. Comput. Inf. Syst., vol. 8, no. 2, pp. 717-725, 2012.
[111] J. Cheng, G. Zhang and F. Neri, “Enhancing distributed differential evolution with multicultural migration for global numerical optimization,” Inf. Sci., vol. 247, no. 20, pp. 72-93, Oct. 2013.
[112] A. Zamuda, J. Brest and E. Mezura-Montes, “Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization,” in Proc. IEEE Congr. Evol. Comput., Cancún, México, Jun. 2013, pp. 1925-1931.
[113] J. Brest, P. Korošec, J. Šilc, A. Zamuda, B. Bošković and M. S. Maučec, “Differential evolution and differential ant-stigmergy on dynamic optimisation problems,” Int. J. Syst. Sci., vol. 44, no. 4, pp. 663-679, 2013.
[114] Z. Wang, A. Bovik, H. Sheikh and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
[115] R. Tanabe and A. Fukunaga, “Improving the search performance of SHADE using linear population size reduction,” in Evolutionary Computation (CEC), 2014 IEEE Congress on, 6-11 Jul. 2014, pp. 1658-1665.
[116] T. Takahama and S. Sakai, “Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation,” in Evolutionary Computation (CEC), 2010 IEEE Congress on, IEEE, 2010, pp. 1-9.
[117] A. Auger and N. Hansen, “A restart CMA evolution strategy with increasing population size,” in Evolutionary Computation, The 2005 IEEE Congress on, IEEE, 2005, pp. 1769-1776.
[118] N. Hansen, “Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed,” in Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers, ACM, 2009, pp. 2389-2396.
校內:2020-02-12公開