簡易檢索 / 詳目顯示

研究生: 劉邦渝
Liou, Bang-Yu
論文名稱: 全基因體分析線蟲對細菌致病因子的宿主反應
Genome-wide analysis of the host responses against bacterial virulence determinants in C. elegans
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 出血性大腸桿菌秀麗隱桿線蟲先天性免疫轉錄體
外文關鍵詞: Enterohaemorrhagic Escherichia coli, Caenorhabditis elegans, innate immunity, transcriptome
相關次數: 點閱:355下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  出血性大腸桿菌是一種經由食物傳染的致病性大腸桿菌。我們實驗室以模式生物秀麗線蟲作為宿主,研究出血性大腸桿菌以及其宿主之間的交互作用。過去研究發現出血性大腸桿菌可以在線蟲腸道內增生並導致線蟲壽命減短;並發現參與脂多醣合成的基因包括rfaD突變時會讓其毒力大大地降低。為了瞭解線蟲如何反應出血性大腸桿菌的感染,我們採取觀察線蟲轉錄體的變化及進行功能性篩選這兩個策略進行研究。利用次世代定序分析當秀麗線蟲在餵食出血性大腸桿菌EDL933或rfaD被突變的出血性大腸桿菌六小時內其轉譯體的變化。經由分析發現許多膠原蛋白會被EDL933誘導表現,許多UDP-葡萄糖醛酸/ UDP-葡萄糖轉移酶和細胞色素P450會被EDL933抑制表現。EDL933可以經由抑制cyp-35A3及cyp-35A4削弱線蟲對EDL933的抵抗力。另一方面,許多物種可以利用模式識別受體辨識病原體相關分子模式使宿主可以抵抗致病菌。為了瞭解線蟲是否擁有模式識別受體,我們利用RNAi篩選在其他物種具有模式識別受體功能的蛋白家族成員,篩選的結果發現有7個基因會降低線蟲對於出血性大腸桿菌的抵抗能力。其中iglr-2可以在線蟲發育成熟後影響其對EDL933的抵抗力。經由生理的觀察以及測試其對壓力的反應,發現iglr-2被抑制並不會造成線蟲發育上的缺陷或使牠原本比較脆弱,並且會影響線蟲對其他許多致病菌的抵抗力。但抑制iglr-2會造成線蟲提早老化及壽命的縮短;因此,抑制iglr-2所造成的影響是必須釐清的。而對於其他基因如何影響線蟲的抵抗力仍需進一步的研究。

    Enterohaemorrhagic Escherichia coli, EHEC, is a food-borne pathogenic E. coli. Our laboratory uses Caenorhabditis elegans as an animal model to study the interaction between EHEC and its host. Previous study revealed that EHEC can colonize in lumen of C. elegans and shorten its lifespan; we found that the mutation of genes involved in lipopolysaccharide biosynthesis, including rfaD, depresses the toxicity of EHEC significantly. In order to understand the response of C. elegans against EHEC infection, we study our subject by tow strategies: analyzing changes in transcriptome of C. elegans and functional screening. By a next generation sequencing, we analyzed the changes in transcriptomes of C. elegans fed with EHEC EDL933 and EDL933 rfaD mutant for 6 hours. Sequencing results showed that many genes in the collagen were induced by EDL933; many genes in UDPGT and cytochrome P450 were depressed. EDL933 can impair the resistance of C. elegans by depressing cyp-35A3 and cyp-35A4 expression. On the other hand, many species detect pathogen by pattern-recognition receptor (PRR) recognizing the pathogen-associated molecular pattern. To identify the PRR in C. elegans, we screened the protein families with known function of pathogen detection in other species. By the RNAi screenging, 7 genes were discovered to depress the resistance of C. elegans against EDL933. Among them, iglr-2 can influence the resistance against EHEC after mature of C.elegans. By the physiological observation and stress test, we found that depression of iglr-2 does not make C. elegans defect or general weak; it also influence the resistance of C. elegans against many other pathogen. However, iglr-2 depression promotes aging and shortens lifespan. Therefore, the effects of iglr-2 knockdown have to be clarified. The impact of other genes on the resistance of C. elegans against EHEC remains more studies.

    目錄 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VI 緒論 1 研究目的 10 實驗材料與方法 11 蟲株維持與同期化 11 線蟲RNA萃取,次世代定序,基因表現量分析 11 階層式分群法分析與基因本體學註記分析 12 RNAi致病菌洋菜膠盤皿試驗 12 篩選模式辨認受體RNAi株庫建置及篩選 13 壽命、生理測量及壓力抵抗測試 15 實驗結果 17 線蟲餵食出血性大腸桿菌會造成其轉錄體改變 17 利用生物資訊分析表現量有變化的基因其主要的功能 18 表現量有差異的基因對線蟲抵抗出血性大腸桿菌的影響 20 建置,篩選RNAi株庫 20 iglr-2對線蟲生理,壓力抵抗以及其他致病菌的影響 22 結論 23 討論 25 一、線蟲對出血性大腸桿菌感染之轉錄體分析: 25 二、利用RNAi篩選線蟲對出血性大腸桿菌感染的模式辨認受體: 28 三、總結: 31 圖 32 表 43 參考文獻 54 附錄一 線蟲轉錄體中表現量有差異的基因 62 Genes up-regulated in EDL933 compare to OP50 62 Genes down-regulated in EDL933 compare to OP50 66 Genes up-regulated in EDL933 ∆RfaD compare to OP50 70 Genes down-regulated in EDL933 ∆RfaD compare to OP50 74 Genes up-regulated in EDL933 ∆RfaD compare to EDL933 76 Genes down-regulated in EDL933 ∆RfaD compare to EDL933 82 附錄二 DAVID 註記分群分析(三組同時) 84 DAVID annotation cluster stasis 84 附錄三 DAVID註記分群分析(兩組之間) 93 Gene up-regulated in EDL933 compare to OP50 93 Gene down-regulated in EDL933 compare to OP50 95 Gene up-regulated in EDL933 ∆RfaD compare to OP50 98 Gene down-regulated in EDL933 ∆RfaD compare to OP50 99 Gene up-regulated in EDL933 ∆RfaD compare to EDL933 101 Gene down-regulated in EDL933 ∆RfaD compare to EDL933 103 附錄四  篩選模式辨認受體RNAi株庫之統計結果 106 附錄五 盤皿測試生存曲線統計 116

    1. Goosney, D.L., S. Gruenheid, and B.B. Finlay, Gut feelings: enteropathogenic E. coli (EPEC) interactions with the host. Annu Rev Cell Dev Biol, 2000. 16: p. 173-89.
    2. Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
    3. Panos, G.Z., G.I. Betsi, and M.E. Falagas, Systematic review: are antibiotics detrimental or beneficial for the treatment of patients with Escherichia coli O157:H7 infection? Aliment Pharmacol Ther, 2006. 24(5): p. 731-42.
    4. Nicholas R.Waterfield, B.W.W., Richard H. ffrench-Constant, Invertebrates as a source of emerging human pathogens. Nature Reviews Microbiology 2004. 2(10): p. 9.
    5. Darby, C., Interactions with microbial pathogens. WormBook, 2005: p. 1-15.
    6. Alegado, R.A., et al., Characterization of mediators of microbial virulence and innate immunity using the Caenorhabditis elegans host-pathogen model. Cell Microbiol, 2003. 5(7): p. 435-44.
    7. Wu, K., et al., A correlative analysis of epidemiologic and molecular characteristics of methicillin-resistant Staphylococcus aureus clones from diverse geographic locations with virulence measured by a Caenorhabditis elegans host model. Eur J Clin Microbiol Infect Dis, 2013. 32(1): p. 33-42.
    8. Feinbaum, R.L., et al., Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog, 2012. 8(7): p. e1002813.
    9. Anyanful, A., et al., Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene. Mol Microbiol, 2005. 57(4): p. 988-1007.
    10. Alegado, R.A., et al., The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol, 2011. 13(10): p. 1618-37.
    11. Shapira, M., et al., A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci U S A, 2006. 103(38): p. 14086-91.
    12. Irazoqui, J.E., et al., Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog, 2010. 6: p. e1000982.
    13. Troemel, E.R., et al., p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genet, 2006. 2(11): p. e183.
    14. Engelmann, I., et al., A comprehensive analysis of gene expression changes provoked by bacterial and fungal infection in C. elegans. PLoS One, 2011. 6(5): p. e19055.
    15. Simonsen, K.T., et al., Strength in numbers: "Omics" studies of C. elegans innate immunity. Virulence, 2012. 3(6): p. 477-84.
    16. Shivers, R.P., M.J. Youngman, and D.H. Kim, Transcriptional responses to pathogens in Caenorhabditis elegans. Curr Opin Microbiol, 2008. 11(3): p. 251-6.
    17. DC-SIGNGeijtenbeek, T.B. and S.I. Gringhuis, Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol, 2009. 9(7): p. 465-79.
    18. Cash, H.L., et al., Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 2006. 313(5790): p. 1126-30.
    19. Sun, Y.D., et al., A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol Immunol, 2008. 45(2): p. 348-61.
    20. Bork, P. and G. Beckmann, The CUB Domain: A Widespread Module in Developmentally Regulated Proteins. Journal of Molecular Biology, 1993. 231(2): p. 539-545.
    21. McElwee, J.J., et al., Shared transcriptional signature in Caenorhabditis elegans Dauer larvae and long-lived daf-2 mutants implicates detoxification system in longevity assurance. J Biol Chem, 2004. 279(43): p. 44533-43.
    22. Luhachack, L.G., et al., EGL-9 controls C. elegans host defense specificity through prolyl hydroxylation-dependent and -independent HIF-1 pathways. PLoS Pathog, 2012. 8(7): p. e1002798.
    23. O'Rourke, D., et al., Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res, 2006. 16(8): p. 1005-16.
    24. Evans, E.A., T. Kawli, and M.W. Tan, Pseudomonas aeruginosa suppresses host immunity by activating the DAF-2 insulin-like signaling pathway in Caenorhabditis elegans. PLoS Pathog, 2008. 4(10): p. e1000175.
    25. Simonsen, K.T., et al., Quantitative proteomics identifies ferritin in the innate immune response of <em>C. elegans</em>. Virulence, 2011. 2(2): p. 120-130.
    26. Marsh, E.K., M.C. van den Berg, and R.C. May, A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans. PLoS One, 2011. 6(3): p. e16839.
    27. Gravato-Nobre, M.J. and J. Hodgkin, Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol, 2005. 7(6): p. 741-51.
    28. Kurz, C.L. and J.J. Ewbank, Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet, 2003. 4(5): p. 380-90.
    29. Irazoqui, J.E., J.M. Urbach, and F.M. Ausubel, Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nat Rev Immunol, 2010. 10(1): p. 47-58.
    30. Kim, D.H. and F.M. Ausubel, Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. Curr Opin Immunol, 2005. 17(1): p. 4-10.
    31. Troemel, E., Host detection of pathogen-induced translational inhibition: a new pathogen-specific branch of the innate immune system? Future Microbiol, 2012. 7(10): p. 1133-6.
    32. Partridge, F.A., M.J. Gravato-Nobre, and J. Hodgkin, Signal transduction pathways that function in both development and innate immunity. Dev Dyn, 2010. 239(5): p. 1330-6.
    33. Kurata, S., S. Ariki, and S. Kawabata, Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology, 2006. 211(4): p. 237-49.
    34. MDPMogensen, T.H., Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev, 2009. 22(2): p. 240-73, Table of Contents.
    35. Akira, S., Innate immunity and adjuvants. Philos Trans R Soc Lond B Biol Sci, 2011. 366(1579): p. 2748-55.
    36. Zipfel, C., Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol, 2008. 20(1): p. 10-6.
    37. flagellinPostel, S. and B. Kemmerling, Plant systems for recognition of pathogen-associated molecular patterns. Semin Cell Dev Biol, 2009. 20(9): p. 1025-31.
    38. Segonzac, C. and C. Zipfel, Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol, 2011. 14(1): p. 54-61.
    39. Stuart, L.M., N. Paquette, and L. Boyer, Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol, 2013. 13(3): p. 199-206.
    40. Gust, A.A., et al., Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci, 2012. 17(8): p. 495-502.
    41. Buist, G., et al., LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol, 2008. 68(4): p. 838-47.
    42. Spaink, H.P., Specific recognition of bacteria by plant LysM domain receptor kinases. Trends Microbiol, 2004. 12(5): p. 201-4.
    43. Figdor, C.G., Y. van Kooyk, and G.J. Adema, C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol, 2002. 2(2): p. 77-84.
    44. Turning 'sweet' on immunity Sato, S., et al., Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev, 2009. 230(1): p. 172-87.
    45. Nio-Kobayashi, J., H. Takahashi-Iwanaga, and T. Iwanaga, Immunohistochemical localization of six galectin subtypes in the mouse digestive tract. J Histochem Cytochem, 2009. 57(1): p. 41-50.
    46. Rabinovich, G.A. and M.A. Toscano, Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol, 2009. 9(5): p. 338-52.
    47. Schutt, C., Fighting infection: the role of lipopolysaccharide binding proteins CD14 and LBP. Pathobiology, 1999. 67(5-6): p. 227-9.
    48. Schumann, R.R., Host cell-pathogen interface: molecular mechanisms and genetics. Vaccine, 2004. 22 Suppl 1: p. S21-4.
    49. Kurata, S., Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. Int Immunol, 2010. 22(3): p. 143-8.
    50. Dziarski, R. and D. Gupta, Mammalian PGRPs: novel antibacterial proteins. Cell Microbiol, 2006. 8(7): p. 1059-69.
    51. Dziarski, R. and D. Gupta, The peptidoglycan recognition proteins (PGRPs). Genome Biol, 2006. 7(8): p. 232.
    52. Schulenburg, H., et al., Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology, 2008. 213(3-4): p. 237-50.
    53. Powell, J.R., D.H. Kim, and F.M. Ausubel, The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response. Proc Natl Acad Sci U S A, 2009. 106(8): p. 2782-7.
    54. Sieburth, D., et al., Systematic analysis of genes required for synapse structure and function. Nature, 2005. 436(7050): p. 510-7.
    55. Schulenburg, H., C.L. Kurz, and J.J. Ewbank, Evolution of the innate immune system: the worm perspective. Immunol Rev, 2004. 198: p. 36-58.
    56. Twumasi-Boateng, K. and M. Shapira, Dissociation of immune responses from pathogen colonization supports pattern recognition in C. elegans. PLoS One, 2012. 7(4): p. e35400.
    57. Pukkila-Worley, R., F.M. Ausubel, and E. Mylonakis, Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog, 2011. 7(6): p. e1002074.
    58. Chou, T.C., et al., Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol, 2013. 15(1): p. 82-97.
    59. Ruiz, N., D. Kahne, and T.J. Silhavy, Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol, 2006. 4(1): p. 57-66.
    60. Hritonenko, V. and C. Stathopoulos, Omptin proteins: an expanding family of outer membrane proteases in Gram-negative Enterobacteriaceae. Mol Membr Biol, 2007. 24(5-6): p. 395-406.
    61. Haiko, J., et al., Invited review: Breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun, 2009. 15(2): p. 67-80.
    62. Beutler, B. and E.T. Rietschel, Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol, 2003. 3(2): p. 169-76.
    63. Kawai, T. and S. Akira, TLR signaling. Cell Death Differ, 2006. 13(5): p. 816-25.
    64. Thomassin, J.L., et al., Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. Gut Microbes, 2012. 3(6): p. 556-61.
    65. Lehner, B., et al., Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol, 2006. 7(1): p. R4.
    66. Batista, P.J., et al., PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell, 2008. 31(1): p. 67-78.
    67. Brenner, S., The genetics of Caenorhabditis elegans. Genetics, 1974. 77(1): p. 71-94.
    68. Whangbo, J.S. and C.P. Hunter, Environmental RNA interference. Trends Genet, 2008. 24(6): p. 297-305.
    69. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
    70. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
    71. Kamath, R.S. and J. Ahringer, Genome-wide RNAi screening in Caenorhabditis elegans. Methods, 2003. 30(4): p. 313-21.
    72. Kamath, R.S., et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 2003. 421(6920): p. 231-7.
    73. Reboul, J., et al., C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat Genet, 2003. 34(1): p. 35-41.
    74. Saldi, T., et al., Functional redundancy of worm spliceosomal proteins U1A and U2B'. Proc Natl Acad Sci U S A, 2007. 104(23): p. 9753-7.
    75. Selfors, L.M., et al., soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc Natl Acad Sci U S A, 1998. 95(12): p. 6903-8.
    76. Dixon, S.J., et al., FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development, 2006. 133(7): p. 1263-75.
    77. Gotenstein, J.R., et al., The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development, 2010. 137(21): p. 3603-13.
    78. Piano, F., et al., Gene clustering based on RNAi phenotypes of ovary-enriched genes in C. elegans. Curr Biol, 2002. 12(22): p. 1959-64.
    79. Ceron, J., et al., Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev Biol, 2007. 7: p. 30.
    80. Altincicek, B., et al., Role of matrix metalloproteinase ZMP-2 in pathogen resistance and development in Caenorhabditis elegans. Dev Comp Immunol, 2010. 34(11): p. 1160-9.
    81. Kao, C.Y., et al., Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog, 2011. 7(3): p. e1001314.
    82. Menzel, R., T. Bogaert, and R. Achazi, A systematic gene expression screen of Caenorhabditis elegans cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys, 2001. 395(2): p. 158-68.
    83. Menzel, R., et al., CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch Biochem Biophys, 2005. 438(1): p. 93-102.
    84. Gao, X., et al., NleB, a bacterial effector with glycosyltransferase activity, targets GAPDH function to inhibit NF-kappaB activation. Cell Host Microbe, 2013. 13(1): p. 87-99.
    85. Pham, T.H., et al., Functional differences and interactions between the Escherichia coli type III secretion system effectors NleH1 and NleH2. Infect Immun, 2012. 80(6): p. 2133-40.
    86. Kirienko, N.V., et al., Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe, 2013. 13(4): p. 406-16.
    87. Lemaitre, B., et al., Pillars article: the dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996. 86: 973-983. J Immunol, 2012. 188(11): p. 5210-20.
    88. Youngman, M.J., Z.N. Rogers, and D.H. Kim, A decline in p38 MAPK signaling underlies immunosenescence in Caenorhabditis elegans. PLoS Genet, 2011. 7(5): p. e1002082.
    89. Papp, D., P. Csermely, and C. Soti, A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans. PLoS Pathog, 2012. 8(4): p. e1002673.
    90. NSMBealeSchulenburg, H. and J.J. Ewbank, The genetics of pathogen avoidance in Caenorhabditis elegans. Mol Microbiol, 2007. 66(3): p. 563-70.
    91. Chang, H.C., J. Paek, and D.H. Kim, Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour. Nature, 2011. 480(7378): p. 525-9.
    92. Qin, Y., X. Zhang, and Y. Zhang, A neuronal signaling pathway of CaMKII and Gqalpha regulates experience-dependent transcription of tph-1. J Neurosci, 2013. 33(3): p. 925-35.
    93. Zhang, Y., H. Lu, and C.I. Bargmann, Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 2005. 438(7065): p. 179-84.
    94. Xie, Y., et al., RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans. PLoS Genet, 2013. 9(3): p. e1003324.
    95. Yen, K., S.D. Narasimhan, and H.A. Tissenbaum, DAF-16/Forkhead box O transcription factor: many paths to a single Fork(head) in the road. Antioxid Redox Signal, 2011. 14(4): p. 623-34.
    96. Dunbar, T.L., et al., C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe, 2012. 11(4): p. 375-86.
    97. McEwan, D.L., N.V. Kirienko, and F.M. Ausubel, Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host Microbe, 2012. 11(4): p. 364-74.
    98. Melo, J.A. and G. Ruvkun, Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell, 2012. 149(2): p. 452-66.
    99. Kleino, A. and N. Silverman, UnZIPping mechanisms of effector-triggered immunity in animals. Cell Host Microbe, 2012. 11(4): p. 320-2.
    100. Paredes, J.C., et al., Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity, 2011. 35(5): p. 770-9.
    101. Bosco-Drayon, V., et al., Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe, 2012. 12(2): p. 153-65.
    102. Chinen, T. and A.Y. Rudensky, The effects of commensal microbiota on immune cell subsets and inflammatory responses. Immunol Rev, 2012. 245(1): p. 45-55.

    下載圖示 校內:2023-12-31公開
    校外:2013-12-31公開
    QR CODE