簡易檢索 / 詳目顯示

研究生: 翁筱涵
Weng, Hsiao-Han
論文名稱: 廢加氫脫硫觸媒中有價金屬之資源化研究
Recovery of Valuable Metals from Spent Hydrodesulfurization Catalysts
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 104
中文關鍵詞: 離子交換樹脂
外文關鍵詞: Molybdenum, Vanadium, Nickel, ion exchange
相關次數: 點閱:179下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技進步,對於燃料油之需求與日俱增,但隨著環保意識抬頭,對於燃燒燃料所產生之廢棄汙染物處理方式更加重視,因此,在燃料製造過程中加入加氫脫硫(Hydrodesulfurization,HDS)製程,以減少對於環境之汙染。在加氫脫硫製程中所需之觸媒(catalysts)材料需定期更換,故導致國內每年生產約10,000~12,000公噸之廢加氫脫硫觸媒,其中包含許多在過程中吸附於觸媒上之有價金屬,如釩(Vanadium)、鉬(Molybdenum)、鎳(Nickel),若能將廢觸媒資源化,即可解決棘手的廢棄物問題,更可同時回收有價金屬。
    本研究使用硫酸浸漬經熱處理之廢HDS觸媒,使有價金屬溶解於浸漬液中,在使用離子交換法處理溶液中之金屬離子,達到分離與純化有價金屬的目的。廢觸媒於4N硫酸浸漬持溫80℃、3小時可得浸漬液作為後續離子交換之進料,其溶液pH值為0.49。所得浸漬液中釩之浸出率可達95.63%,鉬之浸出率為99.23%,鎳之浸出率為87.46%,鋁之浸出率為30.48%。利用此浸漬液依序分離鉬、釩及鎳。首先分離鉬時使用IRA900Cl樹脂,以進料流速7 B.V./hr.、進料pH=0.49進行管柱離子交換,可處理進料體積約100 B.V.,接著使用3 M NaOH進行脫附,鉬回收率可達91.22%,富集鉬離子之脫附液添加硝酸後可沉澱出三氧化鉬(MoO3)產品,其沉澱率達98.94%。分離釩時利用陰離子及陽離子樹脂來進行吸附,陰離子形態的釩為使用強鹼性陰離子樹脂IRA900Cl進行吸附,其溶液pH值以NaOH調整為1.8,進料流速固定為2.0 B.V./hr.,可處理進料體積約90 B.V.,接著使用6 N H2SO4進行脫附,釩之回收率可高達98.05%。陽離子形態的釩則使用陽離子螯合型樹脂IRC748於pH=2.1、進料流速為4.0 B.V./hr.條件下可處理進料體積約15 B.V.,使用3 N HCl脫附,釩回收率可達99.28%。富集釩離子之脫附液添加氨水可產生VO(OH)2沉澱,經過高溫氧化焙燒後可得氧化釩(V2O5)產品,沉澱率達99.5%。分離鎳則利用已分離鉬及釩之交換尾液,並維持溶液之pH值(pH=2.1) 使用螯合型樹脂M4195為吸附劑,並將進料流速控制為2.0 B.V./hr.進行管柱離子交換,可處理進料體積約60 B.V.,使用3 N HCl脫附,Ni回收率可達95.10%。

    Catalysts are widely used in petroleum refining and chemical industries. Among all the secondary resources, spent catalysts are undoubtedly much important because of not only their large amount and economic values, but also the environmental concerns if not disposed properly.
    Separation of molybdenum, vanadium, and nickel in sulfuric acid leachate containing 0.3 g/L Mo, 1.8 g/L V and 0.5 g/L Ni was performed using ion exchange in this study. Loading behavior of the those three metals from moderate to strong acid solution was investigated using anion (IRA900_Cl) and chelating resins (IRC748 and M4195). The loading capacity of IRA900_Cl for Mo from sulfuric acid solution at pH 0.49 was 139.32 mg/ml; the loading capacity of IRA900_Cl for V anions from sulfuric acid solution at pH1.8 was 147.98 mg/ml; the loading capacity of IRC748 for V cations from sulfuric acid solution at pH 2.1 was 8.44 mg/ml; the loading capacity of M4195 of Ni from sulfuric acid solution at pH2.1 was 40.83 mg/ml. The Mo ions in the loaded resin was eluted by 3M NaOH solution; the V anions and V cations in the loaded resin were eluted by 6N H2SO4 and 3N HCl solution respectively; the Ni ions in the loaded resin was eluted by 3N HCl. Finally, adding HNO3 into the eluted solution containing Mo, MoO3 product was precipitated; adding NH4OH into the eluted solution containing of V, V2O5 product was precipitated.

    摘要……………………………………………………………...…………………..I 致謝………………………………………………………………………………VII 目錄…………………...…………………………………………………………VIII 表目錄……………………………………………………………………….…….XI 圖目錄……………………………….……………………………………………XII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 4 第二章 理論基礎與前人文獻 5 2-1 浸漬[24-27] 5 2-1-1 電勢—pH圖在浸漬過程熱力學研究之應用[25] 6 2-1-2 浸漬過程 7 2-2 離子交換法[26-30] 8 2-2-1 離子交換樹脂[31][32] 9 2-2-2 離子交換樹脂的基本性質 16 2-2-3 離子交換樹脂之反應[33] 19 2-2-4 影響交換速度的因素 21 2-2-5 管柱中離子交換機制 21 2-2-6 吸附作用[34][35] 25 2-3 回收 25 2-4 前人研究 26 2-4-1 鉬的物種 26 2-4-2 釩的物種 28 2-4-3 鎳的物種[44] 30 2-4-4 浸漬 30 2-4-5 釩鉬分離 32 2-4-6 釩的回收 34 2-4-7 鉬的回收 35 2-4-8 鎳的回收 35 第三章 實驗材料與步驟 37 3-1 實驗材料與設備 37 3-1-1 實驗材料 37 3-1-2 實驗設備 41 3-2 實驗流程 42 3-3 實驗方法與步驟 44 第四章 結果與討論 47 4-1 HDS廢觸媒浸漬實驗 47 4-1-1 浸漬液硫酸濃度對浸出效率的影響 47 4-1-2 浸漬溫度對浸出效率的影響 49 4-1-3 浸漬時間對浸出效率的影響 51 4-1-4 比較「酸焙燒+酸浸漬」與「直接酸浸漬」之浸出效率 53 4-2 以離子交換樹脂吸附HDS浸漬液中鉬、釩、鎳實驗 55 4-2-1 以離子交換分離HDS浸漬液中的鉬離子 55 4-2-2 以離子交換分離HDS浸漬液中的釩離子 62 4-2-3 以離子交換分離HDS浸漬液中的鎳離子 75 4-3 負載鉬、釩、鎳樹脂之脫附 78 4-3-1 樹脂脫附批次實驗 78 4-3-2 樹脂脫附管柱實驗 84 4-4 以離子交換程序分離HDS浸漬液中鉬、釩、鎳之整體流程 91 4-5 以化學沉澱法製備鉬、釩產品 93 4-5-1 三氧化鉬沉澱回收鉬金屬 93 4-5-2 氧化釩沉澱回收釩金屬 94 第五章 結論 96 參考文獻 98

    [1] 簡聰文. 高雄石化工業區之分布與空氣汙染
    [2] 賴怡潔. 熱處理技術應用於煉油工業廢觸媒資源化:多環芳香烴化合物控制之研究
    [3]. 張國慶(2005),「廢觸媒資源化技術與福誼公司資源化成果」,環境工程專欄,No. 31。
    [4]. 陳偉聖(2010),「廢觸媒資源化技術」, 南區資源循環鏈結推動技術研討會。
    [5]. 孫錦宜,劉惠青(2001),廢催化劑回收利用,化學工業出版社,pp.19~20。
    [6]. 蘇英源,郭金國(2000),冶金學,全華科技圖書股份有限公司,pp.3-1~4-20。.
    [7]. 宋明裕(2010),「電鍍製程重金屬廢水離子交換處理技術及案例介紹」,經濟部工業局清潔生產與環保技術e報,No. 80。
    [8]. F.D. Mendes(2004),”Selective sorption of nickel and cobalt from sulphate solution using chelating resins”, International Journal of Miner.Process,74, pp.359~371.
    [9]. Zaimawati Zainol(2009),”Comparative study of chelating ion exchange resins for the recovery of nickel and cobalt from laterite leach tailings”, Hydrometallurgy, 96, pp.283~287.
    [10]. Dow Chemical U.S.A(1984),”Selective absorption of copper, nickel, cobalt and other transition metal ions from sulfuric acid solutions with the chelating ion exchange resin XFS 4195”, Hydrometallurgy, 12, pp.387~400.
    [11]. Centro De Desenvolvimento Mineral, Companhia Vale do Rio Doce(2004), “Selective sorption of nickel and cobalt from sulphate solutions using chelating resins”, International Journal of Miner Process, 74, pp.359~371.
    [12]. Yi-Chu Huang and S. Sefa Koseoglu(1993),”Separation of heavy metals from industrial waste streams by membrane separation technology”, Waste Mangement, 13, pp.481~503.
    [13]. A. Dabrowski, Z. Hubicki, P. Podkoscielny(2004),”Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method”, Chemosphere, 56, pp.91~106.
    [14]. N. Tzanetakis, W.M. Taama, K. Scott, R.J.J. Jachuck(2003),”Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt”, Separation and Purification Technology, 30, pp.113~127.
    [15]. C.Y. Cheng(2010),”Recovery of nickel and cobalt from laterite leach solutions using direct solvent extration Part 1: selection of a synergistic SX system”, Hydrometallurgy, 104, pp.45~52.
    [16]. C.Y. Cheng(2010),”Recovery of nickel and cobalt from laterite leach solutions using direct solvent extration Part 2: Semi- and fully-continuous tests”, Hydrometallurgy, 104, pp.53~60.
    [17]. Wensheng Zhang, Yoko Pranolo(2012),” Extraction and separation of nickel and cobalt with hydroxamic acids LIX○R1104,LIX○R1104SM and the mixture of LIX○R1104 and Versatic 10”, Hydrometallurgy, 20.
    [18]. Dr. Antonio N’unez Jim’enez, Moa, Cuba(2007),”Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation”, Journal of Hazardous Materials, B139, pp.25~30.
    [19].王紹文,姜鳳有(1993),重金屬廢水治理技術,冶金工業出版社,pp.18。
    [20]. Robert W. Peters, Thomas E. White(1986),”Wastewater treatment: physical and chemical methods”, Journal (Water Pollution Control Federation),58(6), pp.481~487.
    [21]. Heikki Leinonen, Jukka Lehto(1994),”Purification of nickel and zinc from waste waters of metal-plating plants by ion exchange”,Reactive Polymers,23, pp.221~228.
    [22]. O.N. Kononova(1997)”Ion exchange recovery of nickel from manganese nitrate solutions”,Hydrometallurgy,45, pp.261~269.
    [23]. A.G. Kholmogorov(1997),”Ion exchange purification of manganese sulphate solutions from cobalt”, Hydrometallurgy, 45, pp.261~269.
    [24]. 李洪桂(2002),濕法冶金學,中南大學出版社,pp.30~184。
    [25]. 林偉凱,蔡潔娃(2009),金屬資源再生技術發展概況分析,財團法人金屬工業研究發展中心,pp.10~12。
    [26]. 朱屯(2005),萃取與離子交換,冶金工業出版社,pp.387~445。
    [27]. 陸九芳,李總成,包鐵竹(1993),分離過程化學,清華大學出版社,pp.155~186。
    [28]. Mohammad Luqman(2012)”Ion exchange technology I – theory and materials. Springer”, pp.1~154.
    [29]. C.E. Harland(1994),”Ion Exchange – theory and practice”, Royal society of chemistry, pp.1~133.
    [30]. Andrei A. Zagorodni(2006),”Ion exchange materials – properties and applications”, Royal institute of technology, pp.1~262.
    [31]. Schmuckler G(1965),”Chelating resins – their analytical properties and applications”, Talanta, 12, pp.281~290.
    [32]. 陳穩如(2001),「高分子表面改質-離子交換樹脂」,國立台北科技大學材料及資源工程所碩士論文。
    [33]. Weber WJ(1972),”Physicochemical processes for water quality control”, Copyright, pp.263.
    [34]. Naushad M. et al(2013),”Adsorption of cadmium ion using a new composite cation- exchanger polyaniline Sn(IV) silicate: kinetics, thermodynamic amd isotherm studies”, International Journal of Environ Sci Technol,10(3), pp567~578.
    [35]. Liu Y, Liu Y-J(2008),” Biosorption isotherms, kinetics and thermodynamics”, Separation and purification technology,61(3), pp.229~242.
    [36]. Tkac P, Paulenova A(2008),”Speciation of molybdenum(VI) in aqueous and organic phases of selected extraction systems”,Sep Sci Technol,43(9-10), pp.2641~2657.
    [37]. Olazabal MA, Orive MM, Fernandez LA, Madariaga JM(1992),”Selective extraction of vanadium(V) from solutions containing molybdenum(VI) by ammonium salts dissolved in toluene”, Solvent Extr Ion Exch,10(4), pp.623~635.
    [38]. Guibal E, Milot C, Tobin JM(1998),” Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies”, Ind Eng Chem Res,37(4), pp.1453~1463.
    [39]. Guzman J, Saucedo I, Navarro R, Revilla J, Fuibal E(2002),”Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation”. Langmuir,18(5), pp.1567~1573.
    [40]. 鄭彭年(1992),離子交換用於石煤提釩的探討,工程設計與研究,pp.35~38。
    [41]. 王四華(2010),「釩的富集及尾液淨化工藝」,湖北工業大學研究碩士學位論文。
    [42]. Li Zeng, Qinggang Li, Liansheng Xiao(2009),”Extration of vanadium from the leach solution of stone coal using ion exchange resin”,Hydrometallurgy,97(3-4), pp.194~197.
    [43]. Zeng L, Cheng C.Y(2009b),”A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part II : Separation and purification and references within”,Hydrometallurgy,98, pp.10~20.
    [44]. 彭容秋(2005),鎳冶金,中南大學出版社,pp.1~50。
    [45]. Rastas J.K., Karpale K.J., Tiitinen H(1983),”Recovery of metal values from spent catalysts used in extracting sulphur from crude petroleum”,Belgian Pat. No. 894678.
    [46]. Lee F.M., Knudsen R.D., Kidd D.R(1992),” Reforming catalysts made from the metals recovered from spent atmospheric residue of desulphurization catalyst”, Industrial & Engineering Chemistry Reserch,31,pp.487~490.
    [47]. Ivam M.V. Jr., Jessica F.P., Julio C.A(2008)”Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium”, Journal of Hazardous Matetials,160, pp.310~317.
    [48]. Angelidis T.N., Tourasanidis E., Marinou E., Stalidis G.A(1995),”Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts”,Conservation and Recycleing,13, pp.269~282.
    [49]. David E. Sherwood, Jr., Johnnie R. Hardee, Jr.(1993),”Method for the reactivation of spent alumina-supported hydrotreating catalysts”,United States Patent 5254513.
    [50]. Hyatt D.E(1987),”Value recovery from spent alumina-base catalyst”,US Pat. No.4657745.
    [51]. Grzechowiak J., Grysiewicz W., Ostrowski A., Radomyski B., Walendziewski J(1987),”Recovery of aluminium, cobalt, iron and nickel from used catalysts containing metals of ferrous group and possibly molybdenum on alumina suppor”. Polish Pat. No.136713.
    [52]. Siemens R.E., Jong B.W., Russell J.H(1986),”Potential of spent catalysts as a source of critical metals”,Conservation and Recycling,9, pp.89~96.
    [53]. Thi Hong Nguten, Man Seung Lee(2014),”Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange”,Hydrometallurgy,147-148, pp.142~147.
    [54]. Thi Hong Nguyen, Man Seung Lee(2013),”Separation of molybdenum and vanadium from acid solutions by ion exchange”,Hydrometallurgy,136, pp.65~70.
    [55]. Li Zeng, Chu Yong Cheng(2010)”Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction”,Hydrometallurgy,101,pp.141~147.
    [56]. Hu J, Wang X, Xiao L, Song S, Zhang B(2009)”Removal of vanadium from molybdate solution by ion exchange”,Hydrometallurgy,95(3-4),pp. 203~206.
    [57]. Yun Chen, Qiming Feng, Yanhai Shao, Guofan Zhang, Leming Ou, Yiping Lu(2006),”Research on the recycling of valuable metals in spent Al2O3-based catalyst”,Minerals Engineering,19,pp.94~97.
    [58]. Henry P, Van Lierde A(1998),”Selective separation of vanadium from molybdenum by electrochemical ion exchange”, Hydrometallurgy,48(1), pp. 73~81.
    [59]. Wang Li, Yimin Zhang, Tao Liu, Jing Huang, Yi Wang(2013),”Comparison of ion exchange and solvent extration in recovering vanadium from sulfuric acid leach solutions of stone coal”,Hydrometallurgy,131-132,pp.1~7.
    [60]. Yeye Fan, Xuewen Wang, Mingyu Wang(2013),”Separation and recovery of chromium and vanadium from vanadium-containing chromate solution by ion exchange”,Hydrometallurgy,136,pp.31~35.
    [61]. Jun Peng, Xuewen Wang, Changjun Jiang, Mingyu Wang, Yiqian Ma, Xiaoyan Xiang(2014),”Separation of Mo(VI) and Fe(III) from the acid leaching solution of carbonaceous Ni-Mo ore by ion exchange”,Hydrometallurgy,142, pp.116~120.
    [62]. Isabel S.S. Pinto, Helena M.V.M. Soares(2013),”Recovery of molybdates from an alkaline leachate of spent hydrodesulphurisation catalyst – proposal of a nearly-closed process”,Journal of Cleaner Production,52, pp.481~487.
    [63]. Kyung Ho Park, B. Ramachandra Reddy, D. Mohapatra, Chul-Woo Nam(2006),”Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst”,Mineral Processing,80,pp.261~265.
    [64]. Isabel S.S. Pinto, S.M. Sadeghi, Helena M.V.M. Soares(2015)”Separation and recovery of nickel, as a salt, from an EDTA leachate of spent hydrodesulphurization catalyst using precipitation methods”,Chemical Engineering Science,122, pp.130~137.
    [65]. F.D. Mendes, A.H. Martins(2004),”Selective sorption of nickel and cobalt from sulphate solutions using chelating resins”,Journal of Mineral Processing, 74,pp.359~371.
    [66]. 謝佳穎(2012),「以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究」, 國立成功大學資源工程研究所碩士論文。
    [67]. 楊顯萬,邱定蕃(1998),濕法冶金,冶金工業出版社,pp.170~174。
    [68]. 胡閔茜(2013),「離子交換樹脂分離藍泥浸漬液中釩、鉬之研究」,國立成功大學資源工程所碩士論文。

    下載圖示
    2020-06-26公開
    QR CODE