| 研究生: |
薛宗桓 Hsueh, Tsung-Huan |
|---|---|
| 論文名稱: |
基於Bosch 9液壓控制單元之防鎖死制動系統模糊控制器設計及其強健性探討 A Fuzzy Antilock Braking System Controller Design and the Associated Robustness Evaluation Based on Bosch 9 Hydraulic Control Units |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 293 |
| 中文關鍵詞: | 防鎖死煞車系統 、測試載台 、模糊理論控制器 、性能測試 、強健性測試 |
| 外文關鍵詞: | Anti-lock brake systems, Test platform, Fuzzy logic control, Performance indicator, Performance test, Robustness test |
| 相關次數: | 點閱:157 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
防鎖車煞車系統(Antilock braking system, ABS)為車輛的主動式煞車安全系統,能防止車輪鎖死打滑,大幅提高車輛煞車時的操縱性與安全性。歐美各國已將其列為標配,我國近期也推行鼓勵機車加裝防鎖死煞車系統的政策,希望降低因機車量過多而引發的死傷率問題。然而目前國內並無自主開發防鎖死煞車之能力,因此參考工業產品開發流程,開發產品的第一步須先選定一個合格之參考產品,並且獲取其性能方有比較與改善之目標,而測試防鎖死煞車系統性能的方式除了最真實的實車測試外,考良成本以及安全性問題,透過測試載台量測產品性能可以具有更多的發展空間。本研究針對防鎖死煞車控制器的測試與開發,分為兩個階段,首先,本研究利用商用機車ABS Bosch 9在四種環境及系統狀態變異下的強健性作為ABS開發的參考標準,並選用7種性能指標作為評估並量化ABS的性能表現,建立了一套機車用ABS控制器開發測試流程,並以控制器對三項環境變異以及兩項ABS硬體系統發生異常時的強健表現作為測試項目。接著利用本研究自行開發之ABS控制器搭配Bosch 9的油壓控制單元,與Bosch 9的表現進行比較,透過測試了解控制器之優劣,並進行控制策略的改善,最終本文採用模糊理論設計ABS控制器,並成功在控制表現方面,達到良好的改善。本研究透過商用ABS Bosch 9與自主開發之ABS控制器,初步實現了ABS產品開發流程,也透過此過程了解控制器的發展方向,對於國產ABS的開發提供一大助力。
Antilock Braking Systems (ABS) are widely adapted in modern vehicles for enhancing driving safety and maneuverability in braking operation. Their performance and robustness against possible environment variation are thus extremely important. Currently, most ABS related research are usually focused on novel controller design and the above issues are less concerned. However, from whole system performance perspective, such concern must be addressed and essential performance indicator must be defined and characterized. In this work, these issues are implemented using a commercial available Bosch 9 ABS under a self-designed test bench to serve as the reference product for establishing adequate performance indicator and their benchmark standards for evaluate the effectiveness of subsequent controller designs. Specifically, the variations of four possible factors: braking oil pressure, tire pressure, normal contact force, and two abnormalities in the ABS hydraulic control units (HCU) circuit, are considered to characterize the maneuverability and performance variations of the Bosch 9 module in five aspects: the first peak value of slip, average and standard deviation of slip during operation, and the traditional required braking time and achieved distance under using different riding conditions. In parallel, the effectiveness of the self-developed controllers is also characterized under the same conditions. Using the self-developed ABS controller with Bosch 9 hydraulic control unit to compare the performance of Bosch 9 through results of comparison understands the gap of control performance, and establish improvement of control strategy. Finally, this study uses fuzzy theory to design the ABS control and successfully achieved a good improvement in control performance and good results are obtained in the robustness of the vehicle payload. Although it still has a gap with commercial products, the gap would be shortened by continually improving in the future. In summary, this study proposes a set of test process for ABS controller under the robustness performance. Meanwhile, establishing benchmark standards on the reference product as the guidance for performance optimization of self-designed controllers and this should be vital in ABS product design iterations.
[1] 許龍興, “我的機車不犁田-機車防鎖死煞車系統法規檢測簡介,” 2011.
[2] 中華民國內政部警政署統計處, “道路交通事故統計,” [線上]. [存取日期: 2020].
[3] 吳俊鴻, “防鎖死煞車模組之性能與耐就測試平台之設計與實現,” 台南市:國立成功大學, 2018.
[4] 郭書衡, “防鎖死煞車模組性能檢測與開發之多功能測試載台設計與實現,” 台南市:國立成功大學, 2019.
[5] N. Raesian, N. Khajehpour and M. Yaghoobi, “A new approach in Anti-lock Braking System (ABS) based on adaptive neuro-fuzzy self-tuning PID controller,”The 2nd International Conference on Control,Instrumentation and Automation, Shiraz, Iran, 2011.
[6] C. K. Chen and M. C. Shin, “PID-Type Fuzzy Control for Anti-Lock Brake Systems with Parameter Adaptation,” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, Vol. 47, No. 2, pp. 675-685, 2004.
[7] J. Guo, X. Jian and G. Lin, “Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller,” Energies,Vol. 7, No. 10, pp. 6459-6476, 2014.
[8] M. C. Wu and M. C. Shih, “Using the Sliding Mode PWM Method in an Anti-Lock Braking System,” Asian Journal of Control, Vol. 3, No. 3, pp. 255-261, 2001.
[9] A. Mirzaei, M. Moallem, “Design of an Optimal Fuzzy Controller for Antilock Braking Systems,” IEEE Transactions on Vehicular Technology, Vol. 55, No. 6., pp. 1725-1730, 2006.
[10] C. H. Wu, , S. H. Guo and K. S. Chen, “Design and Realization of a Novel Performance and Durability Test Platform for Anti-Lock Braking Modules,” 6th IIAE International Conference on Industrial Application Engineering, Kunibiki Messe, Japan, 2019.
[11] M. C. Wu and M. C. Shih, “Simulated and experimental study of hydraulic anti-lock braking system using sliding-mode PWM control,” Mechatronics, Vol. 13, No. 4, pp. 331-351, 2003.
[12] T. Siefkes, Die Dynamik in der Kontaktfläche von Reifen und Fahrbahn und ihr Einfluss auf das Verschleissverhalten von Traktor-Triebradreifen, vol. 67, Düsseldorf, DEU: VDI-Verlag, 1994.
[13] J.A. Cabrera,A. Ortíz,A. Simón,F. García &A. Pérez La Blanca, "A versatile flat track tire testing machine," Vehicle System Dynamics, vol. 4, no. 40, pp. 271-284, 2003.
[14] J. Luo, M. Namburu, K. R. Pattipati, “Integrated Model-Based and Data-Driven Diagnosis,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 40, no. 2, pp. 321-336, 2010.
[15] D. Savitski, K. Hoepping, V. Ivanov, and K. Augsburg, “Influence of the Tire Inflation Pressure Variation on Braking Efficiency and Driving Comfort of Full Electric Vehicle with Continuous Anti-Lock Braking System,” SAE International Journal of Passenger Cars - Mechancial Systems, Vol. 8, No. 2, pp. 460-467, 2019.
[16] D. P. Madau, F. Yuan, L. I. Davis and L. A. Feldkamp, “Fuzzy logic anti-lock brake system for a limited range coefficient of friction surface,” 於 Second IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 1993.
[17] 吳銘欽, “汽車防鎖死剎車系統控制之研究,” 台南市: 國立成功大學, 2002.
[18] “DOCPLAYER,”[線上]. Available: https://docsplayer.com/118592114-2-5-%E5%82%B3%E5%8B%95%E8%BB%B8%E7%B8%BD%E6%88%90.html#. [存取日期: 2021].
[19] 華人百科. [線上]. Available: https://www.itsfun.com.tw/%E8%BC%AA%E9%80%9F%E6%84%9F%E6%B8%AC%E5%99%A8/wiki-9547316-8354295. [存取日期: 2021].
[20] ETtoday車雲. [線上]. Available: https://speed.ettoday.net/news/1220954. [存取日期: 2021].
[21] 趙志勇,楊成宗, 汽車煞車系統ABS理論與實際, 台北: 全華科技圖書股份有限公司, 1994.
[22] J. O. Mo and Y. H. Lee, “Pwrformance Prediction and Flow Characteristics of a Hydraulic Pump for ABS and ESC System Using FSI Simulation,” International Journal of Automotive Technology, pp. Vol. 21, No. 6, pp. 1419-1429, 12 November 2020.
[23] ARNEWS COM 車訊網, [線上]. Available: https://www.carnews.com/article/info/800c267b-4c88-11e8-8ee2-42010af00004/. [存取日期: 2021].
[24] yahoo 汽車, [線上]. Available: https://autos.yahoo.com.tw/news/%E7%A2%9F%E7%85%9E%E5%B0%B1%E9%9D%A0%E5%A4%BE%E6%8C%81%E7%9A%84%E5%8A%9B%E9%87%8F-%E5%8E%9F%E7%90%86%E7%B0%A1%E5%96%AE%E7%A7%91%E6%8A%80%E5%8D%BB%E5%BE%88%E5%A4%9A-160000911.html. [存取日期: 2021].
[25] Y. Oniz, E. Kayacan, and O. Kaynak, “A Dynamic Method to Forecast the Wheel Slip for Antilock Braking System and,” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Vol. 39, No. 2, pp. 551-560, 2009.
[26] 廖振凱, ABS 測試與模擬平台建立, 新竹: 中華科技大學, 2011.
[27] 陸振原, 機車液壓防鎖死煞車模組設計與系統控制之研究, 台南市: 國立成功大學, 2005.
[28] wikipedia, “Bernoulli's principle,” [線上]. Available: https://en.wikipedia.org/wiki/Bernoulli%27s_principle.
[29] C. A. I. Jian-wei, C. H. U. Liang, C. Wei-feng and W. Yan-bo, "Modeling and Simulation of ABS Hydraulic Control Unit," in 2nd International Conference on Electronic & Mechanical Engineering and Information Technology, 2012.
[30] T. D. Gillesoie, Fundamentals of Vehicle Dynamics, USA: Society of Automotive Engineers, Inc., 1992.
[31] C. Y. Lu and M. C. Shih, “An experimental study on the longitudinal and lateral adhesive coefficients between the tyre and the road for a light motorcycle,” Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, pp. vol.43,pp. 168-178, March 2005.
[32] D. Schramm, M. Hiller, R. Bardini, Vehicle dynamics, Springer, 2014.
[33] K. Ogata, Modern control engineering, 2010.
[34] T. Nakakuki, T. Shen, and K. Tamura, “Adaptive control approach to uncertain longitudinal tire slip in traction control of vehicles,” Asian Journal of Control, Vol. 10, No. 1, pp. 67-73, 2008.
[35] C. K. Chen and M. C. Shih, “PID-Type Fuzzy Control for Anti-Lock Brake Systems with Parameter Adaptation,” JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, Vol.47, No, 2, pp. 675-685, 2004.
[36] N. Raesian, N. Khajehpour and M. Yaghoobi, “A new approach in Anti-lock Braking System (ABS) based on adaptive neuro-fuzzy self-tuning PID controller,” The 2nd International Conference on Control, Instrumentation and Automation, pp. 530-535, 2011.
[37] 馮國臣, 模糊理論基礎與應用, 台中市: 新聞經開發出版股份有限公司, 2007.
[38] 溫坤禮、陳振欽、鄧國修, 模糊控制原理與應用, 台北市: 全華科技圖書股份有限公司, 1994.
[39] J. Guo, X. Jian and G. Lin, “Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller,” Energies 2014,Vol. 7, No. 10, pp. 6459-6476, 2014.
[40] M. R. Akbarzadeh, K. J. Emami and N. Pariz, “Adaptive discrete-time fuzzy sliding mode control for anti-lock braking systems,” 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT, pp. 554-559, 2002.
[41] W. Y. Wang, M. C. Chen and S. F. Su, “Hierarchical T–S fuzzy-neural control of anti-lock braking system and active,” Automatica, Vol.48, No.8, pp. 1698-1706, 2012.
[42] R. Precup, M. Sabau, C. Dragos, M. Radac, L. Fedorovici and E. M. Petriu, “Particle Swarm Optimization of fuzzy models for Anti-Lock Braking Systems,” 2014 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS), Linz, Austria, 2014.
[43] A. M. El-Garhy,G. A. El-Sheikh and M. H. El-Saify, “Fuzzy Life-Extending Control of Anti-Lock Braking System,” Ain Shams Engineering Journal, Vol.4, No.4, 735-751, 2013.
[44] 孫宗瀛、楊英魁, Fuzzy控制-理論、實作與應用, 台北市: 全華科技圖書股份有限公司, 1994.
[45] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller. I,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, no. 2, pp. 404-418, 1990.
[46] Qi Chen, Wenfeng Tian, Wuwei Chen, Qadeer Ahmed and Yanming Wu, “Model-Based Fault Diagnosis of an Anti-Lock Braking System via Structural Analysis,” Sensors 2018, Vol. 18, No. 12, 4468, 2018.
[47] S.H. Crandall,D. C. Karnopp,E. F. Kurtz,D. C. Pridmore-Brown, Dynamics of mechanical and electromechanical systems, New York: McGraw-Hill, 1968.
[48] F. A. Firestone, “A New Analogy Between Mechanical and Electrical Systems,” The Journal of the Acoustical Society of America, Vol. 4, No. 3, pp. 249-267, 1933.
[49] A. Bloch, “Electromechanical analogies and their use for the analysis of mechanical and electromechanical systems,” Journal of the Institution of Electrical Engineers - Part I: General, Vol. 92,No. 52 , pp. 157-169, 1944.
[50] C. M. Lin and C. F. Hsu, “Neural-network hybrid control for antilock braking systems,” IEEE Transactions on Neural Networks, pp. vol. 14, no. 2, pp. 351-359, March 2003.
[51] F. Pretagostini, L. Ferranti, G. Berardo, V. Ivanov and B. Shyrokau, “Survey on Wheel Slip Control Design Strategies, Evaluation and Application to Antilock Braking Systems,” IEEE Access, vol. 8, pp. 10951-10970, 2020.
[52] S. B. Phadke , P. D. Shendge, and V. S. Wanaskar, “Control of Antilock Braking Systems Using,” IEEE Transactions on Industrial Electronics, vol. 67, no. 8, pp. 6815-5823, 2020.
[53] A. B. Sharkawy, “Genetic fuzzy self-tuning PID controllers for antilock braking systems,” Engineering Applications of Artificial Intelligence, Vol.23, No.7, pp. 1041-1052, 2010.
[54] T.K. Bera, K. Bhattacharya, A.K. Samantaray, “Evaluation of antilock braking system with an integrated model of full vehicle system dynamics,” Simulation Modelling Practice and Theory, vol.19, No. 10, pp. 2131-2150, November 2011.
[55] D. V. Gowda, A. C. Ramachandra, “Modelling and Performance Evaluation Of AntiLock Braking System,” Journal of Engineering Science and Technology, Vol.14, No.5 , pp. 3028-3045, 2019.
[56] J. S. Lin and W. E. Ting, “Nonlinear control design of anti-lock braking systems with assistance of active suspension,” IET Control Theory & Applications, Vol.1, No.1, pp. 343-348, 2007.
[57] A. Taghizadeh, A. Ghaffari and F. Najafi, "Modeling and identification of a solenoid valve for PWM control applications," Comptes Rendus Mecanique, vol. 337, pp. 131-140, 2009.
[58] H. E. Merritt, HYDRAULIC CONTROL SYSTEMS, New York: John Wiley&Sons,IUnc, 1967.
[59] S. H. Crandall, D. C. Karnopp,J. F. Kurtz, Edward and D. C. Pridmore-Brown, "Electromechanical transducers," in Dynamics of Mechanical and Electromechanical Systems, McGraw Hill, 1982, p. 291.
[60] C. H. Wu, “Design and Realization of a Novel Performance and Durability Test Platform for Anti-Lock Braking Modules,” 於 6th IIAE International Conference on Industrial Application Engineering, Kunibiki Messe, Japan, 2019.
[61] T. I. El-wardany, D. Gao, and M. A. Elbestawi, “tool condition monitoring in drilling using vibration signature analysis,” International Journal of Machine Tools Manufacture, vol. 36, no. 6, pp. 687-711, 1996.
[62] C. Scheffer and P. Girdhar, Practical Machinery Vibration Analysis & Predictive Maintenance. Amsterdam, The Netherlands: Elsevier, 2004.
[63] C.-H. Wu, S.-H. Guo and K.-S. Chen, "Design and Realization of a Novel Performance and Durability Test," in 6th IIAE International Conference on Industrial Application Engineering, 2018.