簡易檢索 / 詳目顯示

研究生: 范光中
Fan, Kuong-Chong
論文名稱: 三維非線性光學內視鏡之研發
R&D of Three-Dimensional Nonlinear Optical Endoscope
指導教授: 陳顯禎
Chen, Shean-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 45
中文關鍵詞: 非線性光學內視鏡雙包覆層光纖消色差透鏡組雙光子螢光
外文關鍵詞: nonlinear optical endoscope, double clad fiber, assembly of three achromatic lenses, two-photon fluorescence
相關次數: 點閱:161下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,設計並發展一個微型的非線性光學掃描探頭,結合一微型馬達驅動以獲得3D掃描影像。實驗以GriffinTM Ti:sapphire飛秒雷射震盪器作雷射光源,透過一條雙包覆層光纖中的單模纖芯傳送電射脈衝,多模內包覆層收集非線性的光學訊號。其中利用三片消色差透鏡組降低長波常激發光與短波長信號之間的色差,藉以提昇訊號的收集效率。另一對雙稜鏡組產生負色散,藉以補償整個系統,尤其是光纖部分所造成之正色散,提高非線性光學激發的效率。
    壓電管與光纖整合後,以適當的電壓作驅動,利用螺旋掃描方式,產生一個在空間上填滿的圖形,並透過光電倍增管擷取二維非線性光學影像。螺旋式掃描的視野範圍直徑是60 μm,幀速率是5 Hz,光纖掃描的共震頻是855 Hz,影像像素為273*273。在此論文中,二維的非線性光學掃描管與微型的壓電馬達整合在一起,使得二維掃描管能在軸向上移動,達到三維影像掃描之目的。本實驗製作的三維非線性光學掃描探頭,寬度為6 mm而長度為6.4 cm。

    In this thesis, a three-dimensional (3D) nonlinear optical endoscope with the depth scanning capability has been developed. It includes a developed 2D fiber-optic scanning endoscope and combines with a micro-motor for axial scanning. Therefore, it provides 3D nonlinear optical images such as two-photon excitation fluorescence and second harmonic generation. The developed 2D scanning probe includes a double clad fiber to develop the laser pulses and collect nonlinear optical signal, a spiral fiber scanner forced by a piezoelectric tube, an assembly of three miniature achromatic lenses to reduce the focal shift, and a micro-motor and some z-axis components for achieving the depth scanning. A pair of double prisms can produce the negative group velocity dispersion mainly from the fiber to compensate the dispersion.
    In the 2D scanning tube, a spiral scanning pattern is utilized to drive the fiber cantilever to obtain 2D nonlinear optical images. The field of view is approximately 60 μm in diameter, the pixels are 273*273, the frame rate is 5 Hz, and the resonant frequency is 855 Hz. The 2D scanning tube is housed with a micro-motor for z-axis motion. Furthermore, all components are integrated into a 3D nonlinear optical endoscope. The diameter of the probe is 6 mm and the length is 6.4 cm. The micro-motor achieves axial scanning. Finally, the 3D nonlinear optical images are obtained by a compact, feasible, and fiber-based endoscope.

    Abstract I 摘要 II Acknowledge III List of Figures VI List of Tables VIII Abbreviation IX Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Motivation 2 1.3 Outline 3 Chapter 2 Characteristic of Femtosecond Laser 4 2.1 Femtosecond laser 4 2.2 Dispersion 8 2.3 Self-phase modulation 10 Chapter3 Three-Dimensional Nonlinear Optical Endoscope 12 3.1 Two-dimensional scanning tube 12 3.1.1 Piezoelectric tube 12 3.1.2 High-voltage piezoelectirc driver 14 3.1.3 Optical fiber selection and specification 14 3.1.4 Miniature objective lens 18 3.1.5 Resonant frequency and spiral scanning pattern 21 3.2 Three-dimensional scanning probe 24 3.2.1 Piezoelectric micro-motor 25 3.2.2 Design of 3D scanning probe and components 26 3.3 Photo counting discriminator and LabVIEW FPGA data acquisition board 27 3.4 Optical setup 30 Chapter 4 Experimental Results and Discussions 32 4.1 Resonant frequency of fiber scanning and image calibration 32 4.2 Two-photon fluorescence images 35 4.3 Three dimensional nonlinear optical images 37 Chapter 5 Conclusions 40 References 42

    [1] W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 48, –76 (1990).
    [2] W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 1, 1369–1377 (2003).
    [3] A. Diaspro, G. Chirico, and M. Collini, “Two-photon fluorescence excitation and related techniques in biological microscopy,” Q. Rev. Biophys. 38, 97–166(2005).
    [4] L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 6, 195–206 (2007).
    [5] P. Kim, M. Puoris’haag, D. Côté, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” J. Biomed. Opt. 1 , 010501 (2008).
    [6] K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 0, 98–402 (2007).
    [7] F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, “A miniature head-mounted two-photon microscope: high resolution brain imaging in freely moving animals,” Neuron 1, 90 –912 (2001).
    [8] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiberoptic fluorescence imaging,” Nat. Methods 2, 941–950 (2005).
    43
    [9] W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 9, 5 1–2523 (2004).
    [10] J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 9 , 1 1–3133 (2004).
    [11] B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable .9 gram two-photon fluorescence microendoscope,” Opt. Lett. 0, –2274 (2005).
    [12] L. Fu, A. Jain, H. K. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14, 10 –1032 (2006).
    [13] M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 1, 10 6–1078(2006).
    [14] C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express 16, 5556–5564 (2008).
    [15] Y. C. Wu, J. F. Xi, M. J. Cobb, and X. D. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett. 4, 95 –955 (2009).
    [16] D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. , 10 1–1033(2002).
    [17] Y. C. Wu, Y. X. Leng, J. F. Xi, and X. D. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological
    44
    tissues,” Opt. Express 1 , 90 –7915 (2009).
    [18] L. Fu, X. S. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13, 5528–5534 (2005).
    [19] L. Fu and M. Gu, “Double-clad photonic crystal fiber coupler for compact nonlinear optical microscopy imaging,” Opt. Lett. 1, 14 1–1473 (2006).
    [20] J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 8, 902–904(2003).
    [21] Y. Wu, Y. Zhang, J. Xi, M.J. Li, and X. D. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation.” J. Biomed. Opt. 15, 060506 ( 010).
    [22] B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable .9 gram two-photon fluorescence microendoscope,” Opt. Express 0, –2273 (2005).
    [23] L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt. 12, 040501 (2007).
    [24] Y. Wu, Y. Leng, J. Xi, and X. D. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express 17, 7907–7915 (2009).
    [25] KMLabs, http://www.kmlabs.com/.
    [26] M. Weiner, Ultrafast Optics (John Wiley & Sons, 2009).
    [27] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 2007).
    [28] Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Opt. Express. 18,
    45
    1159–1172 (2010).

    下載圖示 校內:2018-08-30公開
    校外:2018-08-30公開
    QR CODE