| 研究生: |
李囿運 Lee, You-Yun |
|---|---|
| 論文名稱: |
跳視眼球運動速度波形的研究 Study of Velocity Profiles for Saccadic Eye Movements |
| 指導教授: |
陳天送
Chen, Tang-Song |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 跳視 、速度波形 、減速相 、加速相 |
| 外文關鍵詞: | saccade, velocity profile, acceleration phase, deceleration phase |
| 相關次數: | 點閱:72 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
人類的眼球運動是經由中樞神經系統,包括大腦、小腦、腦幹等相互配合而完成,因此對於中樞神經系統受損或病變、退化的患者,其所產生的眼球運動將有異於正常人,巴金森氏症的患者即為一例。
根據先前的研究發現,傳統的量化參數並無法完整的描述跳視的動態過程,而藉由針對跳視整體的軌跡作描述,可以得到比較理想的量化方式。因此本研究的目的即在於對於跳視速度的波形作更進一步的探討。
有些學者提出,跳視眼球運動速度波形的加速時間幾乎不隨振幅而改變,而減速時間會隨著振幅的增加而有延長的趨勢,但另外有學者提出,雖然減速時間與運動週期與振幅呈一線性的關係,加速時間仍會隨著振幅的增加而增加,而由我們模擬出的資料顯示,加速時間在振幅小於40度時會有增加的趨勢,然後即趨近飽和。
在對於跳視速度波形加速相與減速相的研究中,我們發現在振幅變大時,減速相會有比加速項更為明顯的變化。而與加速與減速時間相較之下,加速與減速振幅有著較高的線性相關度與較小的變異性,這表示跳視系統有一自我調控的功能,能使跳視的機制有最好的效能。
另外在本研究中,我們利用了另一可用來描述峰值速度與動作區間的乘積與其振幅之間關係的方程式(有理冪函數),研究目的即在計算出在加速相及減速相中形狀參數的值,並探究其在描述不同群組之跳視速度波形之效果。而由實驗結果顯示,利用我們新提出之參數,在針對病患與正常人的分析裡比起傳統上的參數,在不同群組之間可以得到更明顯的區別。
從上所述,在本研究中所得到的結果在未來將可作為另一種分析跳視眼球運動的方式以及作為醫師在臨床診斷上的參考依據。
ABSTRACT
The control of eye movements is composed of the complicated process of central nervous system (CNS) through the coordination of cerebral, cerelellum, and brain stem, etc. For patients suffer from CNS lesion, the pathological changes or degeneration will produce eye movements disorders. Patients of Parkinson’s disease would be one of them.
The previous study showed the traditional parameters can not describe the whole saccadic dynamics, and by delineating the trajectory of saccade, a better way in quantitative analysis of saccadic dynamics will be obtained. The goals of this study were to investigate the velocity profile of saccade eye movements.
Some investigators argued that the acceleration time of saccadic velocity profiles was almost unchanged for different amplitudes, while the deceleration phase increased with amplitude. Other studies, however, demonstrated that the acceleration time was significantly increased, although both deceleration time and saccadic duration against amplitude demonstrated linear relationship. Simulation data also displayed the acceleration time increased with amplitude for amplitudes below 40o, in which saturation appeared for greater amplitudes.
According to the investigation of the acceleration and deceleration phase of saccadic velocity profile, it is found that deceleration phase will be changed more significantly than acceleration phase as saccadic amplitude increases. Comparing with acceleration and deceleration time, acceleration and deceleration amplitude seem to have higher correlation coefficient and less variance, and this means there is a modulating mechanism in ocular plane, which gives the best efficiency to saccade eye movement.
We propose an equation which can represent the linear relation between product of peak velocity and duration against amplitude (rational power function). Another goal of this study were to evaluate order n of acceleration and deceleration phases of the velocity profiles, which are relating to the profile curvature. The results show that power rational function is more efficient in delineating the dynamics of the velocity in normal subjects and patients. The result might be valuable in diagnosis and able to be proposed as an alternative way in quantitative analysis of saccadic dynamics.
參考文獻
1. Bahill AT, Clark MR, Stark L. The main sequence, a tool for studying human eye movements. Math Biosci 1975;24:191-204.
2. Baloh RW, Sills AW, Kumley WE, Honrubia V. Quantitative measurement of saccade amplitude, duration, and velocity. Neurology 1975;25:1065-1070.
3. Baloh RW, Konrad HR, Sills AW, Honrubia WE. The saccade velocity test. Neurology 1975;25:1071-1076.
4. Chen T, Chen YF, Lin CH, Tsai TT. Quantification analysis for saccadic eye movements. Ann Biom Eng 1998;26:1065-1071.
5. Chen Y-F, Chen T, Tsai T-T. Analysis of volition latency on antisaccadic eye movements. Med Eng Phy 1999;21:555-562.
6. Chen Y-F, Chen T, Tsai T-T, Huang H-H. Performance analysis of visual fixation. Biomed Eng Appl Basis Comm 1999; 11:121-127.
7. Chen Y-F, Lin H-H, Chen T, Tsai T-T, Shih I-F. The peak velocity and skewness relationship for the reflexive saccades. Biomed Eng Appl Basis Comm 2002a; 14 (in press).
8. Chen Y-F. Quantitative analysis of saccadic eye movement and its clinical applications. PHD thesis, NCKU 2002b.
9. Collewijn H, Erkelens CJ, Steinman RM. Binocular coordination of human horizontal saccadic eye movements. J Physiol (London) 1988;404:157-182.
10. E. S. Rosen, P. Eustace, H. S. Thompson, and W. J. K. Cumming, Neuro ophthalmology, 1998.
11. Everling S, Spantekow S, Krappmann P, Flohr H. Event-related potentials associated with correct and incorrect responses in a cued antisaccade task. Exp Brain Res 1998;118:27-34.
12. Evinger C, Kaneko CRS, Fuchs AF. Oblique saccadic eye movements of the cat. Exp Brain Res 1981;118:27-34.
13. Gibson JM, Pimlott R, Kennard C. Ocular motor and manual tracking in Parkinson’s disease and the effect of treatment. J Neurol Neurosur Psych 1987;50:853-860.
14. Harris CM, Wallman J, Scudder CA. Fourier analysis of saccades in monkeys and humans. J Neurophysiol 1990;63:877-886.
15. Harwood MR, Mezey LE, Harris CM. The spectral main sequence of human saccades. J Neurosci 1999;19:9098-9106.
16. Hikosaka O, Wurtz RH. The basal ganglia. In: Wurtz RH, Goldberg ME, editors. The neurobiology of saccadic eye movements: Review of oculomotor research. Vol 3; Elservier, Amsterdam 1989;257-281.
17. Jürgens R, Becker W, and Kornhuber HH. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol Cybern 1981;39:87-96.
18. Kitagawa M, Fukushima J, Tashiro K. Relationship between anti-saccades and the clinical symptoms in Parkinson’s disease. Neurology 1994;44:2285-2289.
19. K. J. Ciuffreda, B. Tannen, Eye movement basics for the clinicians , 1995.
20. Lebedev S, Van Gelder P, Tsui WH. Square-root relations between main saccadic parameters. Invest Ophthalmol Vis Sci 1996;37:2750-2758.
21. Lueck CJ, Tanyeri S, Crawford TJ, Henderson L, Kennard C. Antisaccades and remembered saccades in Parkinson’s disease. J Neurol Neurosur Psych 1990;53:284-288.
22. McKeown MJ. Detection of consistently task-related activations in fMRI data with hybrid independent component analysis. Neuroimage 2000;11:24-35.
23. Rascol O, Clanet M, Montastruc JL, Simonetta M, Soulier-Esteve MJ, Doyon B, Rascol A. Abnormal ocular movements in Parkinson’s disease. Brain 1989;112: 1193-1214.
24. R. J. Leigh, and D. S. Zee, The neurology of eye movements. 3rd ed., 1999.
25. Robinson DA. Oculomotor unit behavior in the monkey. J Neurophysiol 1970;33:393-404.
26. Segraves MA, Goldberg ME. Functional properties of corticotectal neurons in the monkey’s frontal eye field. J Neurophysiol 1987;58:1387-1418.
27. Smit AC, Van Gisbergen, Cools AR. A parametric analysis of human saccades in different experimental paradigms. Vision Res 1987;27,10:1745-1762.
28. Sweeney JA, Mintun MA, Kwee S, Wiseman MB, Brown DL, Rosenberg DR, Carl JR. Positron emission tomography study of voluntary saccadic eye movement and spatial working memory. J Neurophysiol 1996;75,1:454-468.
29. Sylvestre PA, Cullen KE. Quantitative analysis of abducean neuron discharge dynamics during saccadic and slow eye movements. J Neurophysiol 1999;82:2612-2632.
30. Takagi M, Abe H, Hasegawa S, Yoshizawa T, Usui T. Velocity profile of human horizontal saccades. Ophthalmologica 1993;206:169-176.
31. Van Gisbergen JAM, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol 1981;45:417-442.
32. Van Opstal AJ, Van Gisbergen JAM, Eggermont JJ. Reconstruction of neural control signals for saccades based on an inverse method. Vision Res 1985;25:789-801.
33. Van Opstal AJ, Van Gisbergen JAM. Skewness of saccadic velocity profiles: a unifying parameter for normal and slow saccades. Vision Res 1987;27,5:731-745.
34. White OB, Saint-CYR J, Tomlinson D, Sharpe JA. Ocular motor deficits in Parkinson’s disease. II. Control of the saccadic and smooth pursuit systems. Brain 1983;106:571-578.
35.W. Becker, Saccades. In Eye Movements. Ed. R. H. S. Carpenter, 1991.Evinger C., Kaneko C. R. S. and Fuchs A. F., “Oblique saccadic eye movements of the cat,” Expl Brain Res. 41, 370-379, 1981.