| 研究生: |
楊淳博 Yang, Chun-Po |
|---|---|
| 論文名稱: |
氧化鎵系列薄膜電晶體及其紫外光偵測器之應用 Application of Ga2O3-based Thin Film Transistors and UV detection sensors |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 140 |
| 中文關鍵詞: | 氧化鎵鋅 、氧化銦鎵 、薄膜電晶體 、紫外光感測器 |
| 外文關鍵詞: | Ga-Zn-O, Ga-In-O, Thin Film Transistor, UV Sensor |
| 相關次數: | 點閱:133 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要著重在透過共濺鍍法成長之氧化鎵系列氧化物半導體的製作與應用,主要特色為其對應能隙寬度是可調整的與可控制的。此外,氧化鎵材料的能隙寬度為4.9電子伏特、其對應的偵測波長為250奈米。因此,我們期待氧化鎵系列氧化物半導體能運用於深紫外光的偵測運用。
首先,我們選擇氧化鎵與氧化鋅共濺鍍而成的混合氧化物半導體材料,並運用於紫外光偵測器與薄膜電晶體兩種元件上。我們將此材料製作於紫外光偵測器上,在外偏壓10伏特的量測條件下,元件的暗電流、光電流、光暗電流比分別為2.9 × 10^-12 安培、4.2 × 10^-9 安培、1.4 × 10^3。當此元件在對應的截止波長紫外光照射下且外加偏壓0.2伏特的量測條件下,其光響應值為2.7 × 10^-6 安培/瓦。另外,此元件的紫外光對可見光的拒斥比為2.5 × 10^2。
除此之外,我們也將氧化鎵鋅氧化物半導體材料應用於薄膜電晶體的主動層上。在汲極偏壓4伏特的狀態下,臨限電壓、載子遷移率、次臨限擺幅、電流開關比分別為0.35 V、25.8 cm2/Vs、0.2 V/decade、1.1 × 10^5。將此薄膜電晶體置於紫外光偵測系統量測其電流變化,並可推算出光響應值與相對應的紫外光對可見光的拒斥比,分別為0.19 安培/瓦與 1.1 × 10^2。
另一方面,依照相同的製備方法,我們將氧化鎵靶材與氧化銦靶材於常溫下利用共濺鍍法製備成氧化銦鎵薄膜,並沉積於玻璃基板上成為MSM紫外光偵測器的元件。在外偏壓5伏特的量測條件下,元件的暗電流、光電流、光暗電流比分別為2.3 × 10^-11 安培、1.9 × 10^-9 安培、8.3 × 10^2。其光特性方面,同樣於外偏壓5伏特的量測條件下,光響應值與相對應的紫外光對可見光拒斥比,分別為6.9 × 10^-5 安培/瓦與 3.7 × 10^3。同樣地,氧化銦鎵薄膜也被製備成薄膜電晶體的主動層。元件呈現出優良的電特性,載子遷移率、次臨限擺幅、電流開關比分別為7.6 cm2/Vs、0.2 V/decade、~10^5。此元件同樣也被測試其紫外光感測能力,光響應值與相對應的紫外光對可見光拒斥比,分別為0.18 安培/瓦與 4 × 10^4。
主動層的特性優劣對於薄膜電晶體的電特性輸出有很大的影響,雙通道主動層結構被設計出實現較低的臨界電壓與較高的載子遷移率。其載子遷移率、次臨限擺幅、電流開關比分別為53.2 cm2/Vs、0.19 V/decade、~10^7。然而,元件的光偵測特性表現並不如電特性這麼突出,光響應值與相對應的紫外光對可見光拒斥比,分別為35.8 安培/瓦與 1.1 × 10^2。與前述單通道元件特性相較下,可以發現紫外光對可見光拒斥比有很明顯降低現象,主要原因來至於前通道材料內擁有較高的氧空缺密度所致。此針對雙通道元件的光特性改善上,我們仍須在通道製程參數方面下點功夫。
The main goal of this dissertation is fabrication of the Ga2O3-based oxide semiconductors via co-sputtering method. By the co-sputtering method, the bandgap energy of the Ga2O3-based oxide semiconductors become tunable and controllable. Additionally, the Ga2O3 oxide semiconductor has the wider bandgap energy (i.e. 4.9 eV) and deep UV absorption (i.e. 250 nm). Hence, it is expected that the Ga2O3-based oxide semiconductors can be used in the deep UV detection application.
Firstly, we choose the use of a Ga2O3/ZnO alloying material as the active layer for applying in ultraviolet photodetectors and thin film transistors. For UV PDs application, under a 10-V applied bias, the dark current, the photo current and the corresponding IPhoto/IDark ratio are 2.9 × 10^-12 A, 4.2 × 10^-9 A, and 1.4 × 10^3, respectively. When the fabricated device measured at their corresponding cutoff wavelengths with a 0.2-V applied bias, the responsivity value is 2.7 × 10^-6 A/W. Also, the UV-to-visible rejection ratio is calculated as 2.5 × 10^2.
Moreover, we also apply Ga-Zn-O thin film as the active layer of thin film transistors. At operation drain voltage of 4 V (VDS=4V), the threshold voltage (VT), filed-effect mobility (μFE), subthreshold swing (S.S) and ION/IOFF ratio are 0.35 V, 25.8 cm2/Vs, 0.2 V/decade and 1.1 × 10^5, respectively. Additionally, we applied the Ga-Zn-O TFTs upon UV illumination to demonstrate the optical properties. It can be found that the responsivity under cutoff wavelength and DUV-to-visible rejection ratio are 0.19 A/W and 1.1 × 10^2.
On the other hand, we demonstrate MSM UV photodetectors on glass substrate with Ga-In-O oxide semiconductors by co-sputtering using Ga2O3 and In2O3 targets at room temperature. With 5 V applied bias, it is found that measured the dark current, the photo current and the corresponding IPhoto/IDark ratio are 2.3 × 10^-11 A, 1.9 × 10^-9 A, and 8.3 × 10^2, respectively. For the optical property of MSM UV PDs, under 5 V applied bias, the responsivity measured at their corresponding cutoff wavelength is 6.9 × 10^-5 A/W, while the UV-to-visible rejection ratio is 3.7×10^3, respectively.
The Ga-In-O thin films are also applied as the active layers of thin film transistors. The fabricated device presents better electrical characteristics with a μFE of 7.6 cm2/Vs, an SS of 0.2 V/decade, and an on/off current ratio of ~10^5. We also use the fabricated device as the UV sensing detector under external UV excitation. The responsivity under cutoff wavelength is 0.18 A/W, and the DUV-to-visible rejection ratio is 4 × 10^4.
For the electrical properties improvement of thin film transistors, the bilayers channel structure has been proposed to carry out both the lower threshold voltage and the higher mobility. The fabricated device presents excellent electrical characteristics with a μFE of 53.2 cm2/Vs, an SS of 0.19 V/decade, and an on/off current ratio of ~10^7. However, when we applied the device in UV sensing, the responsivity under cutoff wavelength and DUV-to-visible rejection ratio are 35.8 A/W and 1.1 × 10^2, respectively. Compared with the single channel ones, it can be obviously found that the rejection ratio is degraded due to the relative high density of oxygen vacancies for front channel. Hence, it indicates that the deposited condition of front channel needs to be fine-tuned for optical properties improvement.
[1-1] P. G. le Comber, W. E. Spear, and A. Ghaith, “Amorphous-silicon field-effect device and possible application,” Electron. Lett., vol. 15, no. 6, pp. 179-181, 1979.
[1-2] A. R. Moore, “Electron and hole drift mobility in amorphous silicon,” Appl. Phys. Lett., vol. 31, pp. 762-765, 1977.
[1-3] G. R. Chaji, S. Alexander, A. Nathan, and C. Church, “A low-sost stable amorphous silicon AMOLED display with full VT- and VOLED shift compensation,” SID 07 Digest, pp. 1580-1583, 2007.
[1-4] J. B. Kim, C. F. Hernandez, W. J. Potscavage, Jr., X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett., vol. 94, Art. no. 142107, 2009.
[1-5] W. Lim, et al., “Stable Room Temperature Deposited Amorphous InGaZnO4 Thin Film Transistors,” J. Vac. Sci. Technol. B, vol. 26, no. 3, pp. 959-962, 2008.
[1-6] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phys. Lett., vol.93, no.24, Art. no. 242111, 2008.
[1-7] H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, “Characteristics of Gallium-Doped Zinc Oxide Thin-Film Transistors Fabricated at Room Temperature Using Radio Frequency Magnetron Sputtering Method,” Jpn. J. Appl. Phys., vol. 47, pp. 87-90 , 2008.
[1-8] Y. K. Moon, D. Y. Moon, S. Lee, S. H. Lee, and J. W. Park, C. O. Jeong, “Effects of oxygen contents in the active channel layer on electrical characteristics of ZnO-based thin film transistors,” J. Vac. Sci. Technol. B., vol. 26, pp. 1472-1476, 2008.
[1-9] C. Li, Y. Li, Y. Wu, B. S. Ong, and R. O. Loutfy, “ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film,” J. Appl. Phys., vol.102, no. 07, Art. no. 076101, 2007.
[1-10] H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel Oxide Amorphous Semiconductors: Transparent Conducting Amorphous Oxides,” J. Non-Cryst. Solids, vol. 203, pp.334-344, 1996.
[1-11] N. C. Su, S. J. Wang, and Albert Chin, “High-Performance InGaZnO Thin-Film Transistors Using HfLaO Gate Dielectric,” IEEE Elec. Dev. Lett., vol. 30, no. 12, 2009.
[1-12] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor”, Science, vol. 300, pp. 1269-1271, 2003.
[1-13] W. C. Shin, H. Moon, S. Yoo, Y. X. Li , and B. J. Cho, “Low-voltage high-performance pentacene thin-film transistors with ultrathin PVP/high-HfLaO hybrid gate dielectric,” IEEE Elec. Dev. Lett., vol. 30, pp. 1308-1310, 2010.
[1-14] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs,” Thin Solid Films, vol.516, pp. 1516-1522, 2008.
[1-15] K. B. Park, J. B. Seon, G. H. Kim, M. Yang, B. Koo, H. J. Kim, M.K. Ryu, and S. Y. Lee, “High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors,” IEEE Elec. Dev. Lett., vol. 31, pp. 311-313, 2010.
[1-16] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, “Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer,” J. Phys. D: Appl. Phys., vol. 40, pp. 1335-1338, 2007.
[1-17] Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked Pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron. Device Lett., vol. 18, pp. 606-609, 1997.
[1-18] J. C. Campbell, “Phototransistors for lightwave communication,” Semiconduct Semimet., vol.22, pp. 389-447, 1985.
[1-19] A. Star, Y. Lu, K. Bradley, and G. Gr¨uner , “Nanotube Optoelectronic Memory Devices,” Nano Lett., vol. 4, pp.1587-1591, 2004.
[1-20] S. J. Chang, C. H. Chen, P. C. Chang, Y. K. Su, P. C. Chen, Y. D. Jhou, H. Hung, S. M. Wang, and B. R. Huang, “Nitride-based LEDs with p-InGaN capping layer,” IEEE Trans. Elec. Dev., vol.50, pp.2567-2570, 2003.
[1-21] G. Chaji1, A. Nathan, and Q. Pankhurst, “Merged phototransistor pixel with enhanced near infrared response and flicker noise reduction for biomolecular imaging,” Appl. Phys. Lett., vol. 93, no. 20, Art. no. 203504, 2008.
[1-22] N. M. Johnson and A. Chiang, “Highly photosensitive transistors in single-crystal silicon thin films on fused silica,” Appl. Phys. Lett., vol. 45, pp.1102-1105, 1984.
[1-23] Y. Kaneko, N. Koike, K. Tsutsui, and T. Tsukada, “Amorphous silicon phototransistors,” Appl. Phys. Lett., vol.56, pp. 650-652, 1990.
[1-24] J. L. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, no. 12, 2009.
[1-25] H. Shen, C. X. Shan, B. H. Li, B. Xuan, and D. Z. Shen, “Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors”, Appl. Phys. Lett., vol. 103, no. 23, Art. no. 232112-1-232113-4, 2013.
[1-26] Y. H. Liu, S. J. Young, C. H. Hsiao, L. W. Ji, T. H. Meen, W. Water and S. J. Chang, “Visible-blind photodetectors with Mg-doped ZnO nanorods,” IEEE Photon. Technol. Lett., vol. 26, pp. 645-648, 2014.
[1-27] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., vol. 25, pp. 348-351, 2003.
[2-1] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst. Solids, vol. 352, pp. 851–858, 2006.
[2-2] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” J. Non-Cryst. Solids, vol. 200, pp. 165–169, 1996.
[2-3] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor,” Phil. Mag. B., vol. 81, pp. 501–515, 2001.
[2-4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor and thin-film diode having amorphous-oxide semiconductor layer,” Nature, vol. 432, pp. 488-492, 2004.
[2-5] H. Hosono, M. Yasukawa, and H. Kawazoe, “Novel oxide amorphous semiconductors: Transparent conducting amorphous oxides,” J. Non-Cryst. Solids, vol. 203, pp. 334-344, 1996.
[2-6] M. Orita, H. Tanji, M. Mizuno, H. Adachi, and I. Tanaka, “Mechanism of electrical conductivity of transparent InGaZnO4,” Phys. Rev. B, vol. 61, pp. 1811-16, 2000.
[2-7] W. Andreoni and C. A. Pignedoli, “Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles,” Appl. Phys. Lett., vol. 96, pp. 062901-1-062901-3, 2010.
[2-8] J. L. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics,” IEEE Trans. Electron Devices, vol. 56, no. 12, 2009.
[2-9] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003.
[2-10] T. C. Fung, K. Nomura, H. Hosono, and J. Kanicki, “PLD amorphous In-Ga-Zn-O TFTs for future optoelectronics,” Proc. SID Vehicles and Photons, p. 5.4, 2008.
[3-1] Y. Liu, L. X. Pang, J. Liang, M. K. Cheng, J. J. Liang, J. S. Chen, Y. H. Lai, I. K. Sou, “A Compact Solid-State UV Flame Sensing System Based on Wide-Gap II-VI Thin Film Materials,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2737-2744, Mar 2018
[3-2] S. Siddique, M. Z. Iqbal, M. W. Iqbal, S. Khan, “Ultraviolet-light-driven enhanced photoresponse of chemical-vapor-deposition grown graphene-WS2 heterojunction based FETs,” Sens. Actuator B-Chem., vol. 257, pp. 263-269, Mar 2018
[3-3] N. R. Alluri, Y. Purusothaman, A. Chandrasekhar, S. J. Kim, “Self-powered wire type UV sensor using in-situ radial growth of BaTiO3 and TiO2 nanostructures on human hair sized single Ti-wire,” Chem. Eng. J., vol. 334, pp. 1729-1739, Feb 2018
[3-4] M. Kozicki, K. Kwiatos, M. Dudek, Z. Stempien, “Radiochromic gels for UV radiation measurements in 3D,” J. Photochem. Photobiol. A Chem., vol. 351, pp. 197-207, Jan 2018
[3-5] S. Safa, M. Khajeh, R. Azimirad, “The effects of measuring atmosphere on ultraviolet photodetection performance of ZnO nanostructures,” J. Alloys Compd., vol. 735, pp. 1406-1413, Feb 2018.
[3-6] R. Shabannia, “High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods,” Mater. Lett., vol. 214, pp. 254-256, Mar 2018.
[3-7] M. C. Tseng, D. S. Wuu, C. L. Chen, H. Y. Lee, R. H. Horng, “Zinc oxide-based current spreading layer behavior on the performance of P-side-up thin-film red light emitting diodes,” Appl. Surf. Sci., vol. 432, pp. 196-201, Feb 2018.
[3-8] C. Y. Kim, J. H. Park, T. G. Kim, “Effect of photochemical hydrogen doping on the electrical properties of ZnO thin-film transistors,” J. Alloys Compd., vol. 732, pp. 300-305, Jan 2018.
[3-9] J. R. Rangel-Mendez, J. Matos, L. F. Chazaro-Ruiz, A. C Gonzalez-Castillo, G. Barrios-Yanez, “Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells,” Appl. Surf. Sci., vol. 434, pp. 744-755, Mar 2018.
[3-10] C. P. Yang, S. J. Chang, T. H. Chang, C. Y. Wei, Y. M. Juan, C. J. Chiu and W. Y. Weng, “Thin-Film Transistors With Amorphous Indium-Gallium-Oxide Bilayer Channel ,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 572-575, May 2017
[3-11] C. F. Yu, S. H. Chen, S. J. Sun, H. Chou, “Influence of the grain boundary barrier height on the electrical properties of Gallium doped ZnO thin films,” Appl. Surf. Sci., vol. 257, no. 15, pp. 6498-6502, May 2011.
[3-12] S. Gowrishankar, L. Balakrishnan, T. Balasubramanian, N. Gopalakrishnan, “Fabrication of n-Zn1−xGaxO/p-(ZnO)1−x(GaP)x thin films and homojunction,” Mater. Sci. Eng. B Adv., vol. 178, pp. 31–38, Jan 2013.
[3-13] R. Dhahri, M. Hiiri, L. El Mir, A. Bonavita, D. Iannazzo, S. G. Leonardi, G. Neri, “CO sensing properties under UV radiation of Ga-doped ZnO nanopowders,” Appl. Surf. Sci., vol. 355, pp. 1321-1326, Nov 2015.
[3-14] V. T. T. Ho, L. G. Bach, T. Thanh, N. G. Nguyen, L. S. Hong, “Effect of Gallium Source Material on the Transparent Conducting Properties of Ga:ZnO Thin Films Through Metalorganic Chemical Vapor Deposition,” Mol. Cryst. Liq. Cryst., vol. 623, no. 1, pp. 433-443, Dec 2015.
[3-15] H. Y. Liu, V. Avrutin, N. Izyumskaya, M. A. Reshchikov, U. Ozgur, H. Morkoc, “Highly conductive and optically transparent GZO films grown under metal-rich conditions by plasma assisted MBE,” Phys. Status Solidi RRL, vol. 4, no. 3-4, pp. 70-72, Apr 2010
[3-16] T. Terasako, Y. Ogura, S. Fujimoto, H. Song, H. Makino, M. Yagi, S. Shirakata, T. Yamamoto, “Carrier transport and photoluminescence properties of Ga-doped ZnO films grown by ion-plating and by atmospheric-pressure CVD,” Thin Solid Films, vol. 549, pp. 12-17, Dec 2013
[3-17] J. H. Shin, D. K. Shin, H. Y. Lee, J. Y. Lee, “Properties of multilayer gallium and aluminum doped ZnO(GZO/AZO) transparent thin films deposited by pulsed laser deposition process,” Trans. Nonferrous Met. Soc. China, vol. 21, pp. S96-S99, Mar 2011.
[3-18] Y. Y. Chen, F. P. Meng, F. F. Ge, F. Huang, “Ga-doped ZnO films by magnetron sputtering at ultralow discharge voltages: Effects of defect annihilation,” Thin Solid Films, vol. 644, pp. 16-22, Dec 2017
[3-19] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of beta-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express, vol. 4, no. 5, pp. 1067-1076, May 2014.
[3-20] J. Yu, C. X. Shan, X. M. Huang, X. W. Zhang, S. P. Wang, and D. Z. Shen, “ZnO-based ultraviolet avalanche photodetectors,” J. Phys. D: Appl. Phys. vol. 46, no. 30, Art. 305105, Jul 2013
[3-21] S. Aikawa, T. Nabatame, K. Tsukagoshi, “Effects of dopants in InOx-based amorphous oxide semiconductors for thin-film transistor applications,” Appl. Phys. Lett. vol. 103, no.17, Art. 172105, Oct 2013.
[3-22] Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, New York, 2007), p.1071, p. 1029, p.1080.
[3-23] K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon, J. H. Kim, “Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system,” Curr. Appl. Phys., vol. 10, no. 3, pp. S463-S467, May 2010
[3-24] F. Wu, L. Fang, Y. J. Pan, K. Zhou, Q. L. Huang, C. Y. Kong, “Effect of substrate temperature on the structural, electrical and optical properties of ZnO:Ga thin films prepared by RF magnetron sputtering,” Physica, E, Low-dimens. syst. nanostruct., vol. 43, no. 1, pp. 228-234, Nov 2010.
[3-25] R. Prabakaran, T. Monteiro, M. Peres, A. S. Viana, A. F. Da Cunha, H. Aguas, A. Goncalves, E. Fortunato, R. Martins, I. Ferreira, “Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering,” Thin Solid Films, vol. 515, no.24, pp. 8664-8669, Oct 2007
[3-26] C. Y. Tsay, S. H. Yu, “Optoelectronic characteristics of UV photodetectors based on sol-gel synthesized GZO semiconductor thin films,” J. Alloys Compd., vol.596, pp. 145-150, May 2015
[3-27] M. Yilmaz, “Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content,” Mater. Sci. Semicond. Process., vol. 40, pp. 99-106, Dec 2015
[3-28] K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon, J. H. Kim, “Effects of dopant (Al, Ga, and In) on the characteristics of ZnO thin films prepared by RF magnetron sputtering system,” Curr. Appl. Phys., vol. 10, no. 3, pp. S463-S467, May 2010
[3-29] M. H. Hsu, S. P. Chang, S. J. Chang, W. T. Wu, J. Y. Li, “Influence of oxygen on the performance of indium titanium zinc oxide UV sensors fabricated via RF sputtering,” Mater. Sci. Semicond. Process., vol. 74, pp. 297-302, Feb 2018
[3-30] L. X. Qian, X. Z. Liu, C. Y. Han, P. T. Lai, “Improved performance of amorphous InGaZnO thin-film transistor with Ta2O5 gate dielectric by using La incorporation,” IEEE Trans. Device Mater. Rel., vol. 14, no. 4, pp. 1056–1060, Dec. 2014.
[3-31] W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, “A ZnO-Nanowire Phototransistor Prepared on Glass Substrates,” ACS Appl. Mater. Interfaces, vol. 3 no. 2, pp. 162-166, Feb 2011
[3-32] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, Z. D. Huang, and W. Y. Weng, “Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric,” Appl. Phys. Lett. vol. 102, no.22, Art. 221104, Jun 2013.
[3-33] J. Y. Li, S. P. Chang, H. H. Lin, S. J. Chang, “High Responsivity MgxZn1-xO Film UV Photodetector Grown by RF Sputtering,” IEEE Photon. Technol. Lett., vol. 27, no. 9, pp. 978-981, May 2015
[3-34] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, S. P. Chang, “A Solar-Blind beta-Ga2O3 Nanowire Photodetector,” IEEE Photon. Technol. Lett., vol. 22, no. 10, pp. 709-711, May 2010
[3-35] C. C. Yang, Y. K. Su, C. H. Hsiao, S. J. Young, T. H. Kao, M. Y. Chuang, Y. C. Huang, B. C. Wang, S. L. Wu, “Novel Ga-ZnO Nanosheet Structures Applied in Ultraviolet Photodetectors,” IEEE Photon. Technol. Lett., vol. 26, no. 13, pp. 1317-1320, Jul 2014
[3-36] C. H. Hsiao, C. S. Huang, S. J. Young, S. J. Chang, J. J. Guo, C. W. Liu, T. Y. Yang, “Field-Emission and Photoelectrical Characteristics of Ga-ZnO Nanorods Photodetector,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 1905-1910, Jun 2013
[3-37] S. P. Chang, C. Y. Lu, S. J. Chang, Y. Z. Chiou, T. J. Hsueh, C. L. Hsu, “Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 4, pp. 990-995, Jul-Aug 2011
[3-38] R. Yukawa, S. Yamamoto, K. Ozawa, M. Emori, M. Ogawa, S. Yamamoto, K. Fujikawa, R. Hobara, S. Kitagawa, H. Daimon, H. Sakama, and I. Matsuda, “Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy,” Appl. Phys. Lett. vol. 105, no. 15, Art. 151602, Oct 2014.
[3-39] T. H. Chang, S. J. Chang, C. J. Chiu, C. Y. Wei, Y. M. Juan, and W.Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett., vol. 27, no. 8, pp. 915–918, Apr 2015.
[3-40] H. M. Chiu, J. M. Wu, “Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas,” J. Mater. Chem. A, no. 1, vol. 18, pp. 5524-5534, 2013
[3-41] P. Sharma, R. Singh, V. Awasthi, S. K. Pandey, V. Garg, S. Mukherjee, “Detection of a high photoresponse at zero bias from a highly conducting ZnO:Ga based UV photodetector,” RSC Adv., vol. 5, no. 104, pp. 85523-85529, 2015.
[3-42] A. Rajan, H. K. Yadav, V. Gupta, M. Tomar, “Fast response ultra-violet photodetectors based on sol gel derived Ga-doped ZnO,” Procedia Eng., vol. 94, pp. 44–51, 2014
[3-43] C. J. Chiu, S. S. Shih, W. Y. Weng, S. J. Chang, Z. D. Hung, and T. Y. Tsai, “Deep UV Ta2O5/Zinc-indium-tin-oxide thin film photo-transistor,” IEEE Photon. Technol. Lett. vol. 24, no.12, pp. 1018-1020, 2012
[3-44] M. H. Hsu, S. P. Chang, S. J. Chang, C. W. Li, J. Y. Li, and C. C. Lin, “ Fabrication of Zinc Oxide-Based Thin-Film Transistors by Radio Frequency Sputtering for Ultraviolet Sensing Applications,” J. Nanosci. Nanotechnol. vol. 18, no. 5, pp. 3518-3522, 2018
[3-45] J. Y. Li, S. P. Chang, S. J. Chang, H. H. Lin, and M. H. Hsu, “ The effect of the thickness and oxygen ratio control of radio-frequency magnetron sputtering on MgZnO thin-film transistors,” J. Nanosci. Nanotechnol. vol. 17, no. 3, pp. 2037-2040, 2017
[3-46] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 51, no.16, pp. 1242–1244, 1987.
[3-47] C. T. Tsai, T. C. Chang, S. C. Chen, I. K. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 96, no.24, pp. 242105-1–242105-3, 2010.
[3-48] J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent Electronics 1st edn. (New York: Springer) p 142 (2008)
[3-49] D. Hiller, R. Zierold, J. Bachmann, M. Alexe, Y. Yang, J. W. Gerlach, A. Stesmans, M. Jivanescu, U. Mueller, J. Vogt, H. Hilmer, P. Loeper, M. Kuenle, F. Munnik, K. Nielsch, and M. Zacharias, “ Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties,” J. Appl. Phys. vol. 107, no. 6, Art. 064314, 2010
[3-50] J. W. Jin, A. Nathan, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, B. Cobb, “Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress,” AIP Adv. vol. 6, no.8, Art. 085321, 2016
[3-51] S. Y. Huang, T. C. Chang, M. C. Chen, S. C. Chen, C. T. Tsai, M. C. Hung, C. H. Tu, C. H. Chen, J. J. Chang, and W. L. Liau, “ Effects of Ambient Atmosphere on Electrical Characteristics of Al2O3 Passivated InGaZnO Thin Film Transistors during Positive-Bias-Temperature-Stress Operation,” Electrochem. Solid State Lett. vol. 14, no. 4, pp. H177-H179, 2011
[3-52] M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell, and J. Jang, “Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium-gallium zinc-oxide thin-film transistors under high humidity,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 869–874, Mar. 2015.
[3-53] X. D. Huang, J. Q. Song and P. T. Lai, “Improved Stability of alpha-InGaZnO Thin-Film Transistor under Positive Gate Bias Stress by Using Fluorine Plasma Treatment,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 576-579, May 2017
[3-54] F. H. Chen, T. M. Pan, C. H. Chen, J. H. Liu, J. H. Liu, W. H. Lin, and P. H. Chen, “Two-step electrical degradation behavior in alpha-InGaZnO thin-film transistor under gate-bias Stress,” IEEE Electron Dev. Lett., vol. 34, no. 5, pp. 635–637, May 2013
[3-55] J. S. Park, J. K. Jeong, H.J. Chung, Y.G. Mo, and H. D. Kim, “Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water ,”Appl. Phys. Lett. vol. 92, no. 7, Art. 072104, 2008.
[3-56] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang and H. T. Hsueh, “A beta-Ga2O3 Solar-Blind Photodetector Prepared by Furnace Oxidization of GaN Thin Film ,” IEEE Sensors J., vol. 11, no. 4, pp. 999-1003, Apr 2011
[3-57] N. Akin, B. Kinaci, Y. Ozen and S. Ozcelik, “Influence of RF power on the opto-electrical and structural properties of gallium-doped zinc oxide thin films,” J. Mater. Sci., vol. 28, no. 10, pp. 7376-7384, May 2017
[3-58] R.G. Waykar, A.S. Pawbake, R.R. Kulkarni, A. A. Jadhavar, A. M. Funde, V. S Waman, H. M. Pathan, S. R. Jadkar, “Influence of RF power on structural, morphology, electrical, composition and optical properties of Al-doped ZnO films deposited by RF magnetron sputtering,” J. Mater. Sci., vol. 27, no. 2, pp. 1134-1143, Feb 2016
[3-59] X. M. Huang, C. F. Wu, H. Lu, F. F. Ren, Q. Y. Xu, H. Y Ou, R. Zhang, and Y. D. Zheng, “Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination”, Appl. Phys. Lett., vol. 100, no. 24, Art. 243505, Jun 2012.
[4-1] H. Shen, C. X. Shan, B. H. Li, B. Xuan, and D. Z. Shen, “Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors,” Appl. Phys. Lett., vol. 103, Art. no. 232112, 2013.
[4-2] Y. H. Liu, S. J. Young, C. H. Hsiao, L. W. Ji, T. H. Meen, W. Water and S. J. Chang, “Visible-blind photodetectors with Mg-doped ZnO nanorods,” IEEE Photon. Technol. Lett., vol. 26, pp. 645-648, 2014.
[4-3] C. H. Chen and C. T. Lee, “High detectivity mechanism of ZnO-based nanorod ultraviolet photodetectors,” IEEE Photon. Technol. Lett., vol. 25, pp. 348-351, 2003.
[4-4] Y. N. Hou, Z. X. Mei, H. L. Liang, D. Q. Ye, C. Z. Gu, and X. L. Du, “Dual-band MgZnO ultraviolet photodetector integrated with Si,” Appl. Phys. Lett., vol. 102, Art. no. 153510, 2013.
[4-5] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates,” Appl. Phys. Express, vol. 1, Art. no. 011202, 2008.
[4-6] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Tech. Lett., vol. 22, pp. 709-712, 2010.
[4-7] T. Oshima and S. Fujita, “Properties of Ga2O3-based (InxGa1–x)2O3 alloy thin films grown by molecular beam epitaxy,” Phys. Status Solidi C, vol. 5, pp. 3113-3115, 2008.
[4-8] R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, and J. F. Wager, “Transparent ring oscillator based on indium gallium oxide thin-film transistors,” Solid-State Electron., vol. 50, pp. 500-503, 2006.
[4-9] H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, J. F. Wager, C. H. Park, D. A. Keszler, and G. S. Herman, “Thin-film transistors with amorphous indium gallium oxide channel layers,” J. Vac. Sci. Technol. B, vol. 24, pp. 2702-2705, 2006.
[4-10] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Tech. Lett., vol. 22, pp. 709-712, 2010.
[4-11] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, “Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements,” Appl. Phys. Lett., vol. 86, Art. no. 123117, 2005.
[4-12] J. Reemts and A. Kittel, “Persistent photoconductivity in highly porous ZnO films,” J. Appl. Phys., vol. 101, Art. no. 013709, 2007.
[4-13] N. S. Liu, G. J. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Y. Yuan, X. Zou, and X. Z. Zhao, “Direct growth of lateral ZnO nanorod UV photodetectors with Schottky contact by a single-step hydrothermal reaction,” ACS Appl. Mater. Interfaces, vol. 2, pp. 1973-1979, 2010
[4-14] Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang, and X. L. Du, “Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain,” Appl. Phys. Lett., vol. 98, Art. no. 103506, 2011.
[4-15] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO2 nanowires,” Appl. Phys. Lett., vol. 93, Art. no. 112115, 2008.
[4-16] S. Lany and A. Zunger, “Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors” Phys. Rev. B, vol. 72, Art. no. 035215, 2005.
[5-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 448-452, 2004.
[5-2] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kanek, “Dual-gate characteristics of amorphous InGaZnO4 thin-film transistors as compared to those of hydrogenated amorphous silicon thin-film transistors,” IEEE Tran. Electron. Devices, vol. 56, pp. 2027-2033, 2009.
[5-3] K. Hoshino, D. Hong, H. Q. Chiang, and J. F. Wager, “Constant-voltage-bias stress testing of a-IGZO thin-film transistors,” IEEE Tran. Electron. Devices, vol. 56, pp. 1365-1370, 2009.
[5-4] T. Iwasaki, N. Itagaki, T. Den, and H. Kumomi, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channels: An application to amorphous oxide semiconductors in In–Ga–Zn–O system,” Appl. Phys. Lett., vol. 90, Art. no. 242114, 2007.
[5-5] S. E. Ahn , S. H. Jeon , Y. W. Jeon , C. J. Kim , M. J. Lee, C. W. Lee , J. B. Park, I. H. Song , A. Nathan , S. S. Lee , and U. I. Chung, “High-Poerformance Nanowire Oxide Photo-Thin Film Transistors,” Adv. Mater., vol. 25, pp, 5549, 2013.
[5-6] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, Z. D. Huang and W. Y. Weng, “Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric”, Appl. Phys. Lett., vol. 102, Art. no. 221104, 2013.
[5-7] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang and H. T. Hsueh, “A β-Ga2O3 solar-blind photodetector prepared by furnace annealing of GaN thin film,” IEEE Sensors J., vol. 11, pp. 999-1003, 2011.
[5-8] T. Oshima, T. Okuno and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors”, Jpn. J. Appl. Phys., vol. 46, pp. 7217-7220, 2007.
[5-9] J. L. Zhao, X. W. Sun, and S. T. Tan, “Bandgap-Engineered Ga-Rich GaZnO Thin Filmsfor UV Transparent Electronics”, IEEE Trans. Electron Devices, vol. 56, no. 12, 2009.
[5-10] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetronsputtering,” J. Vac. Sci. A, vol.17, no. 1765, 1999.
[5-11] J. H. Park, Y. B. Yoo, J. Y. Oh, J. H. Lee, T. I. Lee, and H. K. Baik, “Enhanced performance of solution-processed amorphous gallium-doped indium oxide thin-film transistors after hydrogen peroxide vapor treatment” Appl. Phys. Express, vol. 7, Art. no. 051101, 2014.
[5-12] D. J. Kim, Y. S. Rim and H. J. Kim, “Enhanced Electrical Properties of Thin-Film Transistor with Self-Passivated Multistacked Active Layers”, ACS Appl. Mater. Interfaces, vol. 5, pp. 4190-4194, 2013.
[5-13] Garrido, J. A.; Monroy, E.; Izpura, I.; Munoz, “Photoconductive gain modelling of GaN photodetectors,” E. Semicond. Sci. Technol. vol. 13, p. 563, 1998.
[5-14] X. M. Huang, C. F. Wu, H. Lu, F. F. Ren, Q. Y. Xu, H. Y Ou, R. Zhang and Y. D. Zheng, “Electrical instability of amorphous indium-gallium-zinc oxide thin film transistors under monochromatic light illumination,” Appl. Phys. Lett., vol. 100, Art. no. 243505, 2012
[5-15] T. H. Chang, C. J. Chiu, W. Y. Weng, S. J. Chang, T. Y. Tsai, and Z. D. Huang, “High responsivity of amorphous indium gallium zinc oxide phototransistor with Ta2O5 gate dielectric,” Appl. Phys. Lett., vol. 101, Art. no. 261112, 2012.
[6-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, vol. 432, pp. 448-452, 2004.
[6-2] K. Takechi, M. Nakata, K. Azuma, H. Yamaguchi, and S. Kaneko, “Dual-gate characteristics of amorphous InGaZnO4 thin-film transistors as compared to those of hydrogenated amorphous silicon thin-film transistors” IEEE Tran. Electron. Dev., vol. 56, pp. 2027-2033, 2009.
[6-3] K. Hoshino, D. Hong, H. Q. Chiang, and J. F. Wager, “Constant-voltage-bias stress testing of a-IGZO thin-film transistors” IEEE Tran. Electron. Dev. vol. 56, pp. 1365-1370, 2009.
[6-4] X. Yu, N. Zhou, J. Smith, H. Lin, K. Stallings, J. Yu, T. J. Marks, and A. Facchetti, “Synergistic approach to high-performance oxide thin film transistors using a bilayer channel architecture,” ACS Appl. Mater. Interfaces, vol. 5, pp. 7983-7988, 2013.
[6-5] S. H. Jeon, S. I. Kim, S. H. Park, I. Song, J. C. Park, S. W. Kim, and C. C. J. Kim, “Low-frequency noise performance of a bilayer InZnO–InGaZnO thin-film transistor for analog device applications,” IEEE Electron. Dev. Lett., vol. 31, pp. 1128-1130, 2010.
[6-6] H. S. Kim, J. S. Park, H. K. Jeong, K. S. Son, T. S. Kim, J. B. Seon, E. H. Lee, J. G. Chung, D. H. Kim, M. K. Ryu, and S. Y. Lee, “Density of states-based design of metal oxide thin-film transistors for high mobility and superior photostability,” ACS Appl. Mater. Interfaces, vol. 4, pp. 5416-5421, 2012.
[6-7] T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates”, Appl. Phys. Express, vol. 1, Art. 011202, 2008.
[6-8] T. H. Chang, S. J. Chang, W. Y. Weng, C. J. Chiu, and C. Y. Wei, "Amorphous indium-gallium-oxide UV photodetectors", IEEE Photon. Technol. Lett., vol. 27, pp. 3083-3086, 2015.
[6-9] R. Cava, J. Philips, J. Kwo, G. A. Thomas, R. B. van Dover, and S. A. Carter, Appl. Phys. Lett., “GaInO3: A new transparent conducting oxide”, vol. 64, pp. 2071-2073, 1994.
[6-10] H. Q. Chiang, D. Hong, C. M. Hung, R. E. Presley, J. F. Wager, C. H Park, D. A. Keszler, and G. S. Herman, “Thin-film transistors with amorphous indium gallium oxide channel layers”, J. Vac. Sci. Technol. B, vol. 24, pp. 2702-2705, 2006.
[6-11] T. H. Chang, S. J. Chang, C. J. Chiu, C. Y. Wei, Y. M. Juan, and W. Y. Weng, "Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors", IEEE Photon. Technol. Lett., vol. 27, pp. 915-915, 2015.
[6-12] C. J. Chiu, S. P. Chang, and S. J. Chang, “High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric”, IEEE Electron. Dev. Lett., vol. 31, pp. 1245-1247, 2010.
[6-13] C. J. Chiu, S. S. Shih, W. Y. Weng, S. J. Chang, Z. D. Hung, and T. Y. Tsai, “Deep UV Ta2O5/zinc-indium-tin-oxide thin film photo-transistor,” IEEE Photon. Technol. Lett., vol. 24, pp. 1018–1020, 2012.
[6-14] J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent Electronics. New York: Springer-Verlag, 2008.
[6-15] Z. E. Smith and S. Wagner, “Implications of the “Defect Pool” concept for “metastable” and “stable” defects in amorphous silicon,” in Amorphous Silicon and Related Materials. Singapore: World Scientific, 1988, pp. 409–480.
[6-16] M. J. Powell, C. van Berkel, A. R. Franklin, S. C. Deane, and W. I. Milne, “Defect pool in amorphous-silicon thin-film transistors,” Phys. Rev. B, Condens. Matter, vol. 45, pp. 4160–4170, 1992.
[6-17] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, “Bias dependence of instability mechanisms in amorphous silicon thin-film transistors,” Appl. Phys. Lett., vol. 51, pp. 1242–1244, 1987.
[6-18] C. T. Tsai, T. C. Chang, S. C. Chen, I. K. Lo, S. W. Tsao, M. C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, “Influence of positive bias stress on N2O plasma improved InGaZnO thin film transistor,” Appl. Phys. Lett., vol. 96, pp. 242105-1–242105-3, 2010.
[6-19] Y. K. Kim, C. H. Ahn, M. G. Yun, S. W. Cho, W. J. Kang, and H. K. Cho, “Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness,” Sci. Rep., vol. 6, Art. 26287, 2016
[6-20] M. D. H. Chowdhury, M. Mativenga, J. G. Um, R. K. Mruthyunjaya, G. N. Heiler, T. J. Tredwell, and J. Jang, “Effect of SiO2 and SiO2/SiNx passivation on the stability of amorphous indium–gallium zinc-oxide thin-film transistors under high humidity,” IEEE Trans. Electron Dev., vol. 62, pp. 869–874, 2015
[6-21] P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, and C. F. Mc-Conville, “Surface electron accumulation and the charge neutrality level in In2O3”, Phys. Rev. Lett., vol. 101, Art. 116808, 2008.
[6-22] L. X. Qian, X. Z. Liu, C. Y. Han, and P. T. Lai, “Improved performance of amorphous InGaZnO thin-film transistor with Ta2O5 gate dielectric by using La incorporation,” IEEE Trans. Device Mater. Rel., vol. 14, pp. 1056–1060, 2014.
[6-23] T. H. Chang, C. J. Chiu, S. J. Chang, T. Y. Tsai, Z. D. Huang and W. Y. Weng, “Amorphous InGaZnO ultraviolet phototransistors with double-stack Ga2O3/SiO2 dielectric”, Appl. Phys. Lett., vol. 102, Art. no. 221104, 2013.
[6-24] Garrido, J. A.; Monroy, E.; Izpura, I.; Munoz, “Photoconductive gain modelling of GaN photodetectors,” E. Semicond. Sci. Technol. vol. 13, p. 563, 1998.
[7-1] X. S. Du, Y. J. Li, G. S. Herman, “A field effect glucose sensor with a nanostructured amorphous In-Ga-Zn-O network,” Nanoscale, vol. 8, no. 43, pp. 18469-18475, 2016
[7-2] J. Park, J. Kim, S. Y. Kim, W. H. Cheong, J. Jang, Y. G. Park, K. Na, Y. T. Kim, J. H. Heo, C. Y. Lee, J. H. Lee, F. Bien, J. U. Park, “Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays,” Sci. Adv., vol. 4, no. 1, Art. eaap9841, 2018.