簡易檢索 / 詳目顯示

研究生: 陳俊霖
Chen, Jun-Lin
論文名稱: 氮化鋁之燃燒合成製程改良及量產技術研究
Improvement in Combustion Synthesis of Aluminum Nitride and a study on Scale-Up Production
指導教授: 鍾賢龍
Chung, Shyan-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 氮化鋁燃燒合成法
外文關鍵詞: Aluminum Nitride, Combustion synthesis
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室研究以燃燒合成法製備氮化鋁粉體已相當久的時間,也獲得多項合成技術的專利。本論文研究主要為燃燒合成氮化鋁製程之進步改良及量產技術研究,由先前的研究發現,在合成氮化鋁的同時,於產物之底部皆會發現有黑色產物的出現,因此吾人自每批次350g級放大至5kg級,並探討底部黑粉生成原因與改變壓力對於產物之影響。於350g級製程之測溫實驗中,發現了反應物維持在氮化鋁熔點(2200℃)的時間若小於80秒,則所生成的產物為黑粉,並利用XRF分析出產物之雜質可能為Ga,所以推論其生成原因為反應物無法維持在氮化鋁熔點以上的時間夠久,氮化鋁分子沒有足夠的時間讓雜質(Ga)沉澱,因此與雜質(Ga)摻雜成黑色產物。於5kg級製程之改變壓力實驗中,發現隨著壓力的提高,產物的氧含量會先下降再上升,並利用文獻資料與實驗數據推測可能是由溫度與壓力兩種因素所影響;於此同時,亦發現增加壓力會造成黃粉產量減少、白粉與黑粉產量增加,並找出實驗之最佳壓力操作條件為0.6MPa。於研磨改質部分,由於氮化鋁容易與水氣反應,因此需進行表面處理,所採用之改質劑為APTS;實驗分為研磨無改質、研磨中改質及研磨後改質進行比較,並由改變APTS添加量的實驗中找出最佳添加劑含量為2wt%,且從中推測出研磨中改質的機制為披覆,研磨後改質的機制為鍵結。

    Combustion synthesis methods for aluminum nitride powder have been developed in our laboratory for many years, and access to a number of synthetic technology patents. In this thesis research, the author develops the process for scale-up production of AlN based on the combustion synthesis methods established in our laboratory. By a previous study we found that in the synthesis of aluminum nitride, the bottom of the product will been found the black product. Since I enlarged the each batch from 350g to 5kg stage. Then discussion on the bottom of the black powder generation reasons and varying the pressure for the product’s influence. In the case of 350g stage for the temperature measurement experiment, which I found that the reaction time maintain at the melting point of aluminum nitride is lower than 80 second if the product is the bottom of black. Using XRF to analyze the content of impurities of product may be Gallium. Then I speculate the reason of generation is that the reactants can’t maintain at above the melting point of aluminum nitride with enough reaction time. Aluminum nitride molecules do not allow enough time for impurities (Gallium) precipitate therefore impurities dope with aluminum nitride as black products. In the case of 5kg stage and the process of varying the pressure experiment. I found that with increasing pressure, the oxygen content of the product will first rise and then fall. I speculate that there has two factors influence the results which are temperature and pressure. Meanwhile, I also found that increasing the pressure will cause the yellow powder reduced production, white powder and black powder increase production. Therefore, I identify the optimal experimental for operating pressure is 0.6MPa. In the part of grinding with modification. Since aluminum nitride was easily reacted with moisture. Therefore, I used APTS for doing surface treatment. The experiment are divided into three part. That are modified without grinding, modified during grinding and modified after grinding. I identify optimal experimental for changing the content of APTS is 2wt%. From the experiment, I inferred the mechanism of modified during modified is APTS coating on the AlN surface and modified after modified is APTS bonding with AlN.

    總目錄 中文摘要 I 英文摘要 II 英文延伸摘要 IV 誌 謝 XIII 總目錄 XIV 圖目錄 XVIII 表目錄 XXI 第一章 緒論 1 1-1 陶瓷材料簡介 1 1-2 氮化鋁性質與應用 2 1-3 目前氮化鋁主要製備方法 5 第二章 原理及研究動機 8 2-1 燃燒合成法 8 2-1-1 熱力學分析 10 2-1-2 動力學分析 13 2-2 反應物孔隙度和壓力對燃燒合成反應的影響 14 2-3 燃燒合成氮化物 16 2-3-1 燃燒合成熱力學 16 2-3-2 燃燒合成動力學 19 2-4 氣相反應成核 21 2-4-1 均勻相成核 21 2-4-2 異質相成核 23 2-5 研究動機 24 第三章 實驗裝置與藥品 26 3-1 小型反應器裝置 26 3-2 大型反應器裝置 26 3-3 小型研磨機裝置 27 3-4 分析儀器 29 3-4-1 X光繞射分析儀 29 3-4-2 場發式電子顯微鏡與微區元素分析 29 3-4-3 氮氧分析儀 30 3-4-4 粒徑分析儀 30 3-4-5 X光螢光分析儀(XRF) 31 3-5 其他儀器設備 31 3-6 藥品 32 第四章 實驗方法 33 4-1 氮化鋁量產製程開發 33 4-1-1 製備反應錠 33 4-1-1-1 石墨坩堝製程 33 4-1-1-2 保溫製程 35 4-1-1-3 包覆鋁箔製程 36 4-1-2 燃燒合成反應之進行 37 4-1-3 產物轉化率測試 38 4-1-4 燃燒反應溫度測量 40 4-2 氮化鋁研磨技術建立以及抗濕處理 41 4-2-1 研磨前準備 44 4-2-2 研磨流程 44 4-2-3 研磨後粉體性質測試 45 第五章 結果與討論 47 5-1 氮化鋁量產製程開發及改良 47 5-1-1 小型反應器合成氮化鋁 51 5-1-1-1 細鋁粉製程 52 5-1-1-2 片狀鋁粉之保溫製程 58 5-1-1-3 片狀鋁粉製程於不同合成壓力比較 65 5-1-1-4 包覆鋁箔製程 70 5-1-2 大型反應器合成氮化鋁 72 5-1-2-1 有無保溫製程比較 73 5-1-2-2 不同合成壓力比較 75 5-1-2-3 探討不同部位粉體之差異 80 5-2 探討氮化鋁研磨改質技術 86 5-2-1 比較不同研磨時間之影響 86 5-2-2 比較不同APTS添加量對研磨中改質氧含量之影響 89 第六章 結論 92 第七章 參考文獻 94 圖目錄 圖1-1 氮化鋁結構 2 圖2-1 燃燒合成反應示意圖 10 圖2-2 不同孔隙度下轉化率與壓力的關係圖 15 圖2-3 平衡壓力與溫度之關係 18 圖2-4 氮氣壓力與孔隙度對轉化率的影響 20 圖2-4 反應經由VLE機構成核之示意圖 24 圖3-1 小型反應器裝置圖 27 圖3-2 大型反應器裝置圖 28 圖3-3 小型研磨機裝置圖 28 圖4-1 反應錠示意圖 34 圖4-2 保溫製程示意圖 36 圖4-3 包覆鋁箔製程示意圖 37 圖4-4 反應錠燃燒波傳遞圖 38 圖4-5 量測轉化率之氫氣收集裝置 40 圖4-6 熱電偶深入350g級反應體示意圖 41 圖4-7 氮化鋁與矽氧烷耦合劑鍵結反應示意圖 43 圖5-1 反應錠介紹 47 圖5-2 反應錠結構分析圖 48 圖5-3 氮化鋁反應錠顎碎篩分流程圖 49 圖5-4 410g級細鋁粉製程產物外觀截面圖 53 圖5-5 細鋁粉製程於不同合成條件之XRD圖譜分析。實驗條件為氫氧化鋁添加量 (A) 1wt%;(B) 3wt%,取樣於中上層產物。 56 圖5-6 細鋁粉製程於不同合成條件之XRD圖譜分析。實驗條件為氫氧化鋁添加量 (A) 1wt%;(B) 3wt%,取樣於底部產物。 56 圖5-7 細鋁粉製程於不同合成條件之XRD圖譜分析。實驗條件為 (A) 85℃、85%R.H. for 4hr.;(B)氫氧化鋁添加量5wt%,取樣於中間產物。 57 圖5-8 細鋁粉石墨坩堝製程於不同合成條件下燃燒溫度與時間關係圖 58 圖5-10 350g級製程於不同條件下燃燒溫度與時間關係圖。實驗條件為 (A)未保溫製程;(B)保溫製程,熱電偶測量位置皆位於反應體半高處(42.5mm)且深入反應體10mm處。 60 圖5-11 350g級製程於不同條件下燃燒溫度與時間關係圖。實驗條件為 (A)未保溫製程;(B)保溫製程,熱電偶測量位置皆位於反應體底部且深入反應體10mm處。 61 圖5-12 90g級保溫製程產物剖面圖 63 圖5-13 90g級製程於不同條件下燃燒溫度與時間關係圖 64 圖5-14 350g級石墨坩堝製程於不同合成壓力下之產物剖面圖 66 圖5-15 350g級石墨坩堝製程於不同條件下燃燒溫度與時間關係圖 67 圖5-16 燃燒合成氮化鋁的溫度曲線及燃燒波傳遞速度 69 圖5-17 350g級包覆鋁箔製程於不同條件下燃燒溫度與時間關係圖 71 圖5-18 350g級片狀鋁粉包覆鋁箔製程產物外觀 72 圖5-19 5kg級產物部分外觀 74 圖5-20 5kg級和350g級製程於不同合成壓力下黃粉之氧含量比較 77 圖5-21 5kg級石墨坩堝製程於不同合成壓力下之產物外觀 79 圖5-22 不同部位粉體之XRD圖譜分析 82 圖5-23 不同部位粉體之SEM圖 83 圖5-24 不同研磨條件於不同研磨時間之氧含量變化比較 88 表目錄 表1-1 氮化鋁的物理和化學特性 3 表1-2 AlN、Al2O3、BeO、SiC材料性質比較 5 表2-1 可利用SHS製備的材料 8 表2 2 絕對燃燒溫度與熔點 13 表5-1 不同鋁粉規格比較 51 表5-2 不同鋁粉雜質含量比較 52 表5-3 於細鋁粉製程中不同合成條件之轉化率比較 54 表5-4 片狀鋁粉在石墨坩堝製程不同部位之轉化率比較 55 表5-5 350g級有無保溫製程中測溫數據與產物外觀之整理 62 表5-6 90g級有無保溫製程中測溫數據與產物外觀之整理 64 表5-7 350g級改變壓力製程測溫數據與產物外觀之整理 69 表5-8 5kg級有無保溫製程之產量及氧含量比較 73 表5-9 5kg級製程於不同合成壓力下之產量及氧含量比較 76 表5-10 0.4MPa合成壓力下之產物各部位產量比較 78 表5-11 0.8MPa合成壓力下之產物各部位產量比較 78 表5-12 不同合成壓力下各部位產量比較 79 表5-13 不同合成壓力下各部位粉體之轉化率及氧含量比較 81 表5-14 不同部位粉體之EDS元素分析比較 84 表5-15 片狀鋁粉與產物之雜質含量比較 85 表5-16 不同研磨條件於不同研磨時間之氧含量變化比較 87 表5-17 不同APTS添加量與乾燥條件對於研磨中改質之氧含量比較 90

    [1]汪建民, 陶瓷技術手冊Ceramic technology handbook,. 中華民國科技發展協會, 1994.
    [2] H. K. Sander, "High-tech ceramics," in C&E News, ed, July 9,1984.
    [3]吳朗, 電子陶瓷-入門, 1992.
    [4] L. M. Sheppard, “Aluminum nitride. A versatile but challenging material”, American Ceramic Society Bulletin, Vol.69, No.11, p.1801-1812(1990)
    [5] N. Kuramoto, H. Taniguchi, and I. Aso, “Development of translucent aluminum nitride ceramics”, American Ceramic Society Bulletin, Vol.68, No.4, p.883-887 (1989).
    [6]顏豐名, "材料與社會," 工研院工業材料研究所, vol. 73, p. 45, 1993.
    [7]黃肇瑞, 陶瓷技術手冊(下), 1995.
    [8] J. Mroz Thomas, Jr., Ceramic Bulletin, Vol.71, No.5, p782,(1992).
    [9] Takanori Watari “Shape of AIN powders prepared by Vapor Phase Reaction of AlCl3.NH3-N2”, Journal of the Ceramic Society of Japan, vol.97, No.8, p.864,(1989).
    [10] G. Selvaduray and L. Sheet, “Aluminum nitride-review of synthesis methods”, Materials Science and Technology, Vol.9, p.463-473 (1993).
    [11] P. M. Drygurgh, U.S. Patent Patent 4,172,754, 1979.
    [12] L.Maya, Advanced Ceramic Materials, vol. 1, p. 150, 1986.
    [13] R. Bachelard and P. Joubert, "Aluminum Nitride by Carbothermal Nitridation," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 109, pp. 247-251, Mar 1989.
    [14] O. Serpek, U.K. Patent Patent 13579, 1906.
    [15] H. T. N. Kuramoto, U.S. Patent Patent 4,618,592, 1986.
    [16]Y. I. H. Yamashita, R. Oguma, T. Hayashi, M. Tamura, and H. Matsuo, Japen Patent Patent 61-205606, 1986.
    [17]C. Lenie, U.S. Patent Patent 3,108,887, 1963.
    [18]T. Okada, M. Toriyama, and S. Kanzaki, "Synthesis of aluminum nitride sintered bodies using the direct nitridation of Al compacts," Journal of the European Ceramic Society, vol. 20, pp. 783-787, May 2000.
    [19]K. G. Nickel, R. Riedel, and G. Petzow, "Thermodynamic and Experimental-Study of High-Purity Aluminum Nitride Formation from Aluminum-Chloride by Chemical Vapor-Deposition," Journal of the American Ceramic Society, vol. 72, pp. 1804-1810, Oct 1989.
    [20] R. Riedel and K. U. Gaudl, "Formation and Characterization of Amorphous Aluminum Nitride Powder and Transparent Aluminum Nitride Film by Chemical Vapor-Deposition," Journal of the American Ceramic Society, vol. 74, pp. 1331-1334, Jun 1991.
    [21] W. G. M. S.D. Dunmead, K.E. Howard, K.C. Morse, U.S. Patent Patent 5,649,278, 1997.
    [22] S. L.Chung, W. L. Yu, and C. N. Lin, "A self-propagating high-temperature synthesis method for synthesis of AlN powder," Journal of Materials Research, vol. 14, pp. 1928-1933, May 1999.
    [23] S. M. Bradshaw and J. L. Spicer, "Combustion synthesis of aluminum nitride particles and whiskers," Journal of the American Ceramic Society, vol. 82, pp. 2293-2300, Sep 1999.
    [24] A.G.Merzhanov. Self-propagating high-temperature synthesis: twenty years of searchand findings. Combustion and plasma synthesis of high-temperature materials.1-53,1990.
    [25] Z. A. Munir, "Synthesis of High-Temperature Materials by Self-Propagating Combustion Methods," American Ceramic Society Bulletin, vol. 67, pp. 342-349, Feb 1988.
    [26] J. Subrahmanyam and M. Vijayakumar, "Self-Propagating High-Temperature Synthesis," Journal of Materials Science, vol. 27, pp. 6249-6273, Dec 1 1992.
    [27] J.Holt, S.Dunmead. Self-heating synthesis of materials. Annu Rev MaterSci.21(1):305-34, 1991.
    [28] A.Varma, J.P.Lebrat. Combustion synthesis of advanced materials. Chem Eng Sci.47(9):2179-94, 1992.
    [29] J.Holt, Z.Munir. Combustion synthesis of titanium carbide: theory and experiment. J Mater Sci.21(1):251-9, 1986.
    [30] A.Merzhanov. The theory of stable homogeneous combustion of condensed substances. Combustion and Flame.13(2):143-56, 1969.
    [31]劉素英, 自蔓延高溫合成(SHS) TiN粉末的研究 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
    [32]張學軍, 鄭永才, and 韓杰才, "氮氣壓力對Si3N4-SiC-TiN陶瓷自蔓延燃燒合成的影響," 複合材料學報 Acta Materiae Compositae Sinica, vol. 23, pp. 123-126, 2006.
    [33]張寶林, 庄漢銳, and 符錫仁, 硅粉在高壓氮氣中字蔓延燃燒合成氮化硅的反應機理 vol. 自蔓延高溫合成技術研究進展: 武漢工業大學出版社, 1994.
    [34] J.Karpiński, S.Porowski. High pressure thermodynamics of GaN. J Cryst Growth.66(1):11-20, 1984.
    [35] Z.A.Munir, J.B.Holt. The combustion synthesis of refractory nitrides. J Mater Sci.22(2):710-4, 1987.
    [36] cited; Available from: http://kinetics.nist.gov/janaf/.
    [37] Z.A. Munir, J.B.Holt The combustion synthesis of refractory nitrides. J Mater Sci.22(2):710-4, 1987.
    [38]黃其清. 燃燒合成製程研究:氮化鋁、氮化硼粉體之合成及鈦+碳 / 鈦+鋁系統之反應機構; 國立成功大學博士論文, 86年畢業.
    [39] A. Atkinson, A.J. Moulson, E. Roberts Nitridation of High‐Purity Silicon. J Am Ceram Soc.59(7‐8):285-9, 1976.
    [40] E. J. Langham and B. J. Mason, "The Heterogeneous and Homogeneous Nucleation of Supercooled Water," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 247, pp. 493-504, 1958.
    [41] P. B. Price, "Nonbasal Glide in Dislocation‐Free Cadmium Crystals. I. The (101¯1) [12¯10] System," Journal of Applied Physics, vol. 32, pp. 1746-1750, 1961.
    [42] R. S. Wanger, WhiskerTechnology. New York, 1970.
    [43] W. S. Jung and H. U. Joo, "Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method," Journal of Crystal Growth, vol. 285, pp. 566-571, Dec 15 2005.
    [44] H. Wang, D. O. Northwood, J. C. Han, and S. Y. Du, "Combustion synthesis of AIN
    [45]劉益嘉, "燃燒合成氮化鋁粉體之量產製程開發," 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2011.
    [46] 許倍華, "氮化鋁粉體的表面改質技術開發," 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2011.
    [47] 謝承佑, "高導熱氮化鋁陶瓷粉體在複合材料與電子基板應用之先導研究," 博士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2006.
    [48] Wu, S.-Y., et al. "Mechanical, thermal and electrical properties of Aluminum nitride/polyetherimide composites." Composites Part A: Applied Science and Manufacturing 42(11): 1573-1583, (2011).
    [49]J. Shin, D.-H. Ahn, M.-S. Shin, and Y.-S. Kim, "Self-Propagating High-Temperature Synthesis of Aluminum Nitride under Lower Nitrogen Pressures," Journal of the American Ceramic Society, vol. 83, pp. 1021-1028, 2000.
    [50]A.S.Mukasyan. Combustion Synthesis of Silicon Carbide. Properties and Applications of Silicon Carbide: INTECH. p. 289-409; 2011.
    [51] Y.H. Hsu, S.L. Chung. Combustion synthesis of boron nitride via magnesium reduction using additives. Ceramics International. 41(1): 1457-1465, 2015.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE