| 研究生: |
謝亦涵 Hsieh, Yi-Han |
|---|---|
| 論文名稱: |
pspc1 在斑馬魚發育之角色 The role of pspc1 in zebrafish development |
| 指導教授: |
湯銘哲
Tang, Ming-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | pspc1 、斑馬魚 、發育 |
| 外文關鍵詞: | pspc1, zebrafish, development |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Paraspeckle 是一個位於真核生物細胞核內染色質間的斑點狀結構,由一條長鏈
非編碼核糖核酸 NEAT1 和 DBHS 家族蛋白和其他核糖核酸所組成。先前研究發現
paraspeckle 為一個受細胞刺激調控的動態結構。DBHS 家族蛋白在脊椎動物中包
括 PSPC1、SFPQ 和 NONO 三個成員,他們參與基因調控、核糖核酸加工和運輸,
以及去氧核醣核酸的修復等。PSPC1 不只是 paraspeckle 上的結構蛋白,還是一個
新發現的共轉錄因子,然而目前對於 PSPC1 在發育當中的角色仍然未知。由於斑
馬魚生命週期短、生長速度快、透明方便觀察等優勢,我們利用斑馬魚胚胎來研究
pspc1 在發育中的功能。首先,我們觀察到 pspc1 在自幼魚時期到成年期的表現集
中在頭部和腦的區域。透過顯微注射實驗於胚胎中改變 pspc1 的表現量,利用
CRISPR/Cas9 系統或嗎啉基的基因敲落技術,發現卵黃包覆過程的延遲,和受精後
一天大的幼魚有著彎曲的尾鰭、卵黃囊水腫、U 形體節、心包膜積水等異常發育,
或更嚴重的軀幹喪失。而過度表達 pspc1 則會破壞幼魚的大腦和軀幹形成。為了進
一步了解 pspc1 是否透過影響神經脊細胞參與大腦形成或神經發育,我們利用帶有
sox10 一種神經脊細胞標誌物發綠螢光的基因轉殖魚胚胎,過表達 PSPC1 後三天
大的幼魚有頜軟骨異常和較小的眼睛。以上的結果顯示 pspc1 在斑馬魚的早期胚胎
發育中扮演重要的角色,而我們的研究有助於更多的了解對於 pspc1 在正常生理條
件下在動物發育中的作用。
Paraspeckle is a small, spotted-shaped subnuclear body composed of a long non-coding RNA, the core Drosophila behavior/human splicing (DBHS) family proteins, and other RNAs. It has been reported as a dynamic structure responsive to cellular stress. The DBHS family members, including Paraspeckle component 1 (PSPC1), non-POU domaincontaining octamer-binding protein (NONO) and splicing factor, proline- and glutaminerich (SFPQ) in vertebrates, are involved in gene regulation, RNA processing and transport, and DNA repair. PSPC1 is not only a paraspeckle structural protein but also a novel cotranscription factor. However, the role of PSPC1 in development remains unknown. Due to the advantage of the fast growth of zebrafish and the transparent developing embryos, we employed zebrafish embryos to investigate how pspc1 functions in zebrafish embryo development. We found that the pspc1 was specifically expressed in the head and brain region one day postfertilization (dpf), and the expression was sustained throughout the larvalstage and adulthood. Knockdown of pspc1 expression in embryos by CRISPR/Cas9 system or morpholino showed developmentally delayed phenotype during epiboly, and abnormal development such as the curved tail, yolk sac edema, U-shaped somites, pericardial effusion, and more severe phenotype such as loss of trunk in 1 dpf larvae. Moreover, overexpressing pspc1 disrupted the brain and trunk formation in 1 dpf larvae. To further examine whether pspc1 contributes to brain formation or neurogenesis by regulating neural crest cells (NCCs), we employed the embryos of Tg(sox10:eGFP), a neural crest cell marker. Overexpressing human PSPC1 (hPSPC1) in Tg(sox10:eGFP) embryos led to jaw cartilage anomaly and smaller eye size in 3 dpf larvae. Our results indicated that pspc1 may play an important role in zebrafish embryo development. Taken together, our studies help us to understand more about the function of pspc1 under normal physiology in animal development.
1. Morimoto, M. and C.F. Boerkoel, The role of nuclear bodies in gene expression and disease. Biology (Basel), 2013. 2(3): p. 976-1033.
2. Andersen, J.S., et al., Directed proteomic analysis of the human nucleolus. Curr Biol, 2002. 12(1): p. 1-11.
3. Fox, A.H., et al., Paraspeckles: a novel nuclear domain. Curr Biol, 2002. 12(1): p. 13-25.
4. Chen, L.L. and G.G. Carmichael, Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 2009. 35(4): p. 467-78.
5. Fox, A.H., et al., Paraspeckles: Where Long Noncoding RNA Meets Phase Separation. Trends Biochem Sci, 2018. 43(2): p. 124-135.
6. Prinz, F., et al., The Implications of the Long Non-Coding RNA NEAT1 in NonCancerous Diseases. Int J Mol Sci, 2019. 20(3).
7. Yamazaki, T., et al., Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol Cell, 2018. 70(6): p. 1038-1053.e7.
8. Major, A.T., et al., Dynamic paraspeckle component localisation during spermatogenesis. Reproduction, 2019. 158(3): p. 267-280.
9. Isobe, M., et al., Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. Rna, 2020. 26(3): p. 251-264.
10. Knott, G.J., C.S. Bond, and A.H. Fox, The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res, 2016. 44(9): p. 3989-4004.
11. Shav-Tal, Y. and D. Zipori, PSF and p54(nrb)/NonO--multi-functional nuclear proteins. FEBS Lett, 2002. 531(2): p. 109-14.
12. Iino, K., et al., RNA-binding protein NONO promotes breast cancer proliferation by post-transcriptional regulation of SKP2 and E2F8. Cancer Sci, 2020. 111(1): p. 148-159.
13. Ding, H., et al., NONO promotes hepatocellular carcinoma progression by enhancing fatty acids biosynthesis through interacting with ACLY mRNA. Cancer Cell Int, 2020. 20: p. 425.
14. Zhao, Z., et al., LncNONO-AS regulates AR expression by mediating NONO. Theriogenology, 2020. 145: p. 198-206.
15. Takeuchi, A., et al., Loss of Sfpq Causes Long-Gene Transcriptopathy in the Brain. Cell Rep, 2018. 23(5): p. 1326-1341.
16. Luisier, R., et al., Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun, 2018. 9(1): p. 2010.
17. Xu, X., et al., Deficiency of NONO is associated with impaired cardiac function and fibrosis in mice. J Mol Cell Cardiol, 2019. 137: p. 46-58.
18. Thomas-Jinu, S., et al., Non-nuclear Pool of Splicing Factor SFPQ Regulates
Axonal Transcripts Required for Normal Motor Development. Neuron, 2017. 94(2): p. 322-336.e5.
19. Fagerberg, L., et al., Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014. 13(2): p. 397-406.
20. Gao, X., et al., Paraspeckle protein 1 (PSPC1) is involved in the cisplatin induced DNA damage response--role in G1/S checkpoint. PLoS One, 2014. 9(5): p. e97174.
21. Wang, J., et al., RNA-binding protein PSPC1 promotes the differentiationdependent nuclear export of adipocyte RNAs. J Clin Invest, 2017. 127(3): p. 987-1004.
22. Yeh, H.W., et al., PSPC1 mediates TGF-β1 autocrine signalling and Smad2/3 target switching to promote EMT, stemness and metastasis. Nat Cell Biol, 2018. 20(4): p. 479-491.
23. Jen, H.W., et al., PSPC1 Potentiates IGF1R Expression to Augment Cell Adhesion and Motility. Cells, 2020. 9(6).
24. Szabo, L., et al., Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol, 2015. 16(1): p. 126.
25. Choi, T.Y., et al., Zebrafish as an animal model for biomedical research. Exp Mol Med, 2021. 53(3): p. 310-317.
26. Santoro, M.M., Zebrafish as a model to explore cell metabolism. Trends Endocrinol Metab, 2014. 25(10): p. 546-54.
27. Postlethwait, J.H., et al., Vertebrate genome evolution and the zebrafish gene map. Nat Genet, 1998. 18(4): p. 345-9.
28. Varshney, G.K., R. Sood, and S.M. Burgess, Understanding and Editing the Zebrafish Genome. Adv Genet, 2015. 92: p. 1-52.
29. Suster, M.L., et al., Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol, 2009. 561: p. 41-63.
30. Shin, J.T. and M.C. Fishman, From Zebrafish to human: modular medical models. Annu Rev Genomics Hum Genet, 2002. 3: p. 311-40.
31. Udvadia, A.J. and E. Linney, Windows into development: historic, current, and
future perspectives on transgenic zebrafish. Dev Biol, 2003. 256(1): p. 1-17.
32. Sneddon, L.U., L.G. Halsey, and N.R. Bury, Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol, 2017. 220(Pt 17): p. 3007-3016.
33. Zon, L.I. and R.T. Peterson, In vivo drug discovery in the zebrafish. Nat Rev Drug Discov, 2005. 4(1): p. 35-44.
34. Weijer, C.J., Collective cell migration in development. J Cell Sci, 2009. 122(Pt 18): p. 3215-23.
35. Passon, D.M., et al., Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci U S A, 2012. 109(13): p. 4846-50.
36. Froger, A. and J.E. Hall, Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp, 2007(6): p. 253.
37. Feliciello, I. and G. Chinali, A modified alkaline lysis method for the preparation of highly purified plasmid DNA from Escherichia coli. Anal Biochem, 1993. 212(2): p. 394-401.
38. Kimmel, C.B., et al., Stages of embryonic development of the zebrafish. Dev Dyn, 1995. 203(3): p. 253-310.
39. Thisse, C. and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc, 2008. 3(1): p. 59-69.
40. Chitramuthu, B.P. and H.P. Bennett, High resolution whole mount in situ hybridization within zebrafish embryos to study gene expression and function. J Vis Exp, 2013(80): p. e50644.
41. Mahmood, T. and P.C. Yang, Western blot: technique, theory, and trouble shooting. N Am J Med Sci, 2012. 4(9): p. 429-34.
42. Bruce, A.E., Zebrafish epiboly: Spreading thin over the yolk. Dev Dyn, 2016. 245(3): p. 244-58.
43. Rohde, L.A. and C.P. Heisenberg, Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cytol, 2007. 261: p. 159-92.
44. Lowery, L.A. and H. Sive, Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development, 2005. 132(9): p. 2057-67.
45. Yin, C., B. Ciruna, and L. Solnica-Krezel, Convergence and extension movements during vertebrate gastrulation. Curr Top Dev Biol, 2009. 89: p. 163-92.
46. Williams, M.L.K. and L. Solnica-Krezel, Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol, 2020. 136: p. 377-407.
47. Rocha, M., et al., Neural crest development: insights from the zebrafish. Dev Dyn, 2020. 249(1): p. 88-111.
48. Martik, M.L. and M.E. Bronner, Regulatory Logic Underlying Diversification of the Neural Crest. Trends Genet, 2017. 33(10): p. 715-727.
49. Xiao, Y., et al., Regulation of zebrafish dorsoventral patterning by phase separation of RNA-binding protein Rbm14. Cell Discov, 2019. 5: p. 37.
50. Bourefis, A.R., et al., Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis, 2020. 142: p. 104935.
51. Xiao, C., et al., Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish. Nat Commun, 2016. 7: p. 13787.
52. Campanari, M.L., et al., TDP-43 Regulation of AChE Expression Can Mediate
ALS-Like Phenotype in Zebrafish. Cells, 2021. 10(2).
53. Hosokawa, M., et al., Loss of RNA-Binding Protein Sfpq Causes Long-Gene Transcriptopathy in Skeletal Muscle and Severe Muscle Mass Reduction with Metabolic Myopathy. iScience, 2019. 13: p. 229-242.
54. Zinski, J., B. Tajer, and M.C. Mullins, TGF-β Family Signaling in Early Vertebrate Development. Cold Spring Harb Perspect Biol, 2018. 10(6).
55. Trepat, X., Z. Chen, and K. Jacobson, Cell migration. Compr Physiol, 2012. 2(4): p. 2369-92.
56. Olson, H.M. and A.V. Nechiporuk, Using Zebrafish to Study Collective Cell Migration in Development and Disease. Front Cell Dev Biol, 2018. 6: p. 83.
57. Hong, S.K., et al., Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development, 2011. 138(4): p. 787-95.
58. Feldman, B., et al., Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature, 1998. 395(6698): p. 181-5.
59. Hammerschmidt, M., G.N. Serbedzija, and A.P. McMahon, Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev, 1996. 10(19): p. 2452-61.
60. Shah, G., et al., Multi-scale imaging and analysis identify pan-embryo cell dynamics of germlayer formation in zebrafish. Nat Commun, 2019. 10(1): p. 5753.
61. Robu, M.E., et al., p53 activation by knockdown technologies. PLoS Genet, 2007. 3(5): p. e78.
62. Lindeman, R.E. and F. Pelegri, Vertebrate maternal-effect genes: Insights into fertilization, early cleavage divisions, and germ cell determinant localization from studies in the zebrafish. Mol Reprod Dev, 2010. 77(4): p. 299-313.
63. Lang, Y.D., et al., PSPC1-interchanged interactions with PTK6 and β-catenin synergize oncogenic subcellular translocations and tumor progression. Nat Commun, 2019. 10(1): p. 5716.
校內:2027-08-31公開