| 研究生: |
黃彥鈞 Huang, Yan-Jun |
|---|---|
| 論文名稱: |
SU-8基板之光化學還原製備銀/SU-8奈米複合物研究 Direct synthesis of silver/SU-8 nanocomposites by photoreduction on SU-8 substrates |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 奈米複合物 、光還原 、銀奈米粒子 |
| 外文關鍵詞: | Nanocomposite, Photoreduction, Silver Nanoparticles |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,奈米材料一直備受關注,奈米粒子與聚合物基質所形成的奈米複
合物(nanocomposite),因其製作上的便利性以及奈米粒子於光學、電學、生醫上特性所長的結合,也帶來許多領域的應用及討論。此篇文章中,我們嘗試使用 SU-8 光阻以光還原法的方式,了解相對前體鹽類混合後還原、先製作奈米粒子後混入等常見製程,製作奈米複合物上的差異以及優劣。
由於銀奈米粒子具有相當強的表面電漿共振(Localized surface plasmon resonance)吸收,利用光還原製程特性,可以調整前體鹽濃度 0.5mM 至 50mM 區間、還原重複次數(一至數十次)等相關製程參數,改變銀奈米粒子分佈及數量來改變光性質的效果,也能結合同系統環境下,衍生製作奈米金銀的複合表面材料,創造更多元維度的頻譜控制效果,可分別調控 420nm 以及 600 至 700nm 波長區間頻譜。利用奈米壓印製作 300 至 500nm點、洞陣列 SU-8 結構後,進行複合物製作,並於後驗證了能於微米級圖案 SU-8 製作的曝光微影後還原的可能性。總體而言,我們方式能解決常見的複合物製作方法預先製作以及繁雜工序、難以保存等缺點,並為廣泛 SU-8 所製元器件,再次加工改質提供了可行性以及新的方向。此一製程具有步驟簡單、單一次製程僅需 30 分鐘、可一次大量製作數十片以上樣品、以及製程可分段化(製程間隔可分隔數十天)等特點,甚至是奈米銀的抗菌性質,並能由單樣品提供 80??2以上的抑菌面積,此些特性也能於後續提供電學、生醫等應用研究方向。
In recent years, nanomaterials have been attracting much attention. The nanocomposite formed by nanoparticle and polymer is due to its convenience in fabrication and the optical, electrical, and biomedical properties of nanoparticle. The combination of these has also brought applications and discussions in many fields. In this article, we will use SU-8 photoresist to make silver nanocomposite by photoreduction method, due to the strong localized surface plasmon resonance absorption of silver nanoparticles. Using the back section process characteristics, the process parameters can be adjusted. The distribution and quantity of silver nanoparticles can be changed to change the effect of optical properties, and it can also be combined with the same system environment, combined with the process architecture of the nano-imprinted gold nanostructures, derivative production the composite surface material of nano-gold and silver creates multi-dimensional spectrum control effects. After the SU-8 structure is fabricated by different patterning methods, the complex is fabricated, which have spectrum differences in different structures and under different process parameters. The possibility of restoration after exposure lithography provides the feasibility for re-processing and modification of components made by SU-8. This process is simple, fast, can be mass-produced, and the process can be segmented, which is also convenient for the promotion of the process and the expansion of the scope of application.
1. M.-C. Daniel, and D. Astruc, "Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology," Chemical Reviews 104, 293-346 (2004).
2. L. M. Liz-Marzán, "Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles," Langmuir 22, 32-41 (2006).
3. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, "Surface-Enhanced Raman Spectroscopy Substrates Created via Electron Beam Lithography and Nanotransfer Printing," ACS Nano 2, 377-385 (2008).
4. C. S. H. Hwang, M.-S. Ahn, Y. Lee, T. Chung, and K.-H. Jeong, "Ag/Au Alloyed Nanoislands for Wafer-Level Plasmonic Color Filter Arrays," Sci Rep 9, 9082-9082 (2019).
5. S. P. Deshmukh, S. M. Patil, S. B. Mullani, and S. D. Delekar, "Silver nanoparticles as an effective disinfectant: A review," Materials Science and Engineering: C 97, 954-965 (2019).
6. Z. Wu, X. Huang, Y.-C. Li, H. Xiao, and X. Wang, "Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging," Carbohydrate Polymers 199, 210-218 (2018).
7. M. S. Sarwar, M. B. K. Niazi, Z. Jahan, T. Ahmad, and A. Hussain, "Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging," Carbohydrate Polymers 184, 453-464 (2018).
8. J. Marqués-Hueso, R. Abargues, J. L. Valdés, and J. P. Martínez-Pastor, "Ag and Au/DNQ-novolac nanocomposites patternable by ultraviolet lithography: a fast route to plasmonic sensor microfabrication," Journal of Materials Chemistry 20, 7436-7443 (2010).
9. R. Abargues, J. Marqués-Hueso, J. Canet-Ferrer, E. Pedrueza, J. L. Valdés, E. Jiménez, and J. P. Martínez-Pastor, "High-resolution electron-beam patternable nanocomposite containing metal nanoparticles for plasmonics," Nanotechnology 19, 355308 (2008).
10. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, and H. Wolf, "Nanoparticle printing with single-particle resolution," Nat Nanotechnol 2, 570-576 (2007).
11. L. Chen, Y. Dong, C.-Y. Tang, L. Zhong, W.-C. Law, G. C. P. Tsui, Y. Yang, and X. Xie, "Development of Direct-Laser-Printable Light-Powered Nanocomposites," ACS Applied Materials & Interfaces 11, 19541-19553 (2019).
12. S. Jiguet, A. Bertsch, H. Hofmann, and P. Renaud, "SU8-Silver Photosensitive Nanocomposite," Advanced Engineering Materials 6, 719-724 (2004).
13. A. K. Yetisen, I. Naydenova, F. da Cruz Vasconcellos, J. Blyth, and C. R. Lowe, "Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications," Chem Rev 114, 10654-10696 (2014).
14. G. V. Ramesh, S. Porel, and T. P. Radhakrishnan, "Polymer thin films embedded with in situ grown metal nanoparticles," Chemical Society Reviews 38, 2646-2656 (2009).
15. E. D. Martínez, R. R. Urbano, and C. Rettori, "Thermoplasmonic Maskless Lithography on Upconverting Nanocomposites Assisted by Gold Nanostars," ACS Applied Nano Materials 2, 6889-6897 (2019).
16. S. Jiguet, A. Bertsch, H. Hofmann, and P. Renaud, "Conductive SU8 Photoresist for Microfabrication," Advanced Functional Materials 15, 1511-1516 (2005).
17. J. Pudlauskaitė, V. Jankauskaitė, A. Lazauskas, I. Prosyčevas, and P. Narmontas, "Ag/DNQ-novolac-based nanocomposite films for controllable UV lithography morphological patterning," Colloid and Polymer Science 291, 1787-1793 (2013).
18. C. D. Gerardo, E. Cretu, and R. Rohling, "Fabrication of Circuits on Flexible Substrates Using Conductive SU-8 for Sensing Applications," Sensors 17 (2017).
19. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, "Micromachining applications of a high resolution ultrathick photoresist," Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures 13, 3012-3016 (1995).
20. H. Tavakoli, W. Zhou, L. Ma, S. Perez, A. Ibarra, F. Xu, S. Zhan, and X. Li, "Recent advances in microfluidic platforms for single-cell analysis in cancer biology, diagnosis and therapy," TrAC Trends in Analytical Chemistry 117, 13-26 (2019).
21. G. Márton, E. Z. Tóth, L. Wittner, R. Fiáth, D. Pinke, G. Orbán, D. Meszéna, I. Pál, E. L. Győri, Z. Bereczki, Á. Kandrács, K. T. Hofer, A. Pongrácz, I. Ulbert, and K. Tóth, "The neural tissue around SU-8 implants: A quantitative in vivo biocompatibility study," Materials Science and Engineering: C 112, 110870 (2020).
22. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
23. A. Olziersky, P. Barquinha, A. Vilà, L. Pereira, G. Gonçalves, E. Fortunato, R. Martins, and J. R. Morante, "Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors," Journal of Applied Physics 108, 064505 (2010).
24. E. K. W. Tan, P. K. Shrestha, A. V. Pansare, S. Chakrabarti, S. Li, D. Chu, C. R. Lowe, and A. A. Nagarkar, "Density Modulation of Embedded Nanoparticles via Spatial, Temporal, and Chemical Control Elements," Advanced Materials 31, 1901802 (2019).
25. S. V. Fischer, B. Uthuppu, and M. H. Jakobsen, "In situ SU-8 silver nanocomposites," Beilstein Journal of Nanotechnology 6, 1661-1665 (2015).
26. J. Ge, T. Huynh, Y. Hu, and Y. Yin, "Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports," Nano Lett 8, 931-934 (2008).
27. A. A. Yaqoob, T. Parveen, K. Umar, and M. N. Mohamad Ibrahim, "Role of Nanomaterials in the Treatment of Wastewater: A Review," Water 12 (2020).
28. I. Mohamed Hamouda, "Current perspectives of nanoparticles in medical and dental biomaterials," J Biomed Res 26, 143-151 (2012).
29. S. Sultana, Rafiuddin, M. Z. Khan, K. Umar, A. S. Ahmed, and M. Shahadat, "SnO<SUB>2</SUB>-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants," Journal of Molecular Structure 1098, 393-399 (2015).
30. R. Singh, and R. Singh, "A Review on Nano Materials of Carbon," IOSR Journal of Applied Physics 9, 42-57 (2017).
31. N. A. Mohd Radzuan, A. B. Sulong, and J. Sahari, "A review of electrical conductivity models for conductive polymer composite," International Journal of Hydrogen Energy 42, 9262-9273 (2017).
32. J. Q. Hu, Q. Chen, Z. X. Xie, G. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang, and Z. Tian, "A Simple and Effective Route for the Synthesis of Crystalline Silver Nanorods and Nanowires," Advanced Functional Materials 14 (2004).
33. T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav, "Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles," Frontiers in Microbiology 7 (2016).
34. H. Huang, and Y. Yang, "Preparation of silver nanoparticles in inorganic clay suspensions," Composites Science and Technology 68, 2948-2953 (2008).
35. K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, and G. Sangiliyandi, "Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis," Materials Letters 62, 4411-4413 (2008).
36. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, "Nanoparticles produced by laser ablation of solids in liquid environment," Applied Surface Science 186, 546-551 (2002).
37. T. M. Dung Dang, T. T. Tuyet Le, E. Fribourg-Blanc, and M. C. Dang, "Influence of surfactant on the preparation of silver nanoparticles by polyol method," Advances in Natural Sciences: Nanoscience and Nanotechnology 3, 035004 (2012).
38. A. A. Yaqoob, K. Umar, and M. N. M. Ibrahim, "Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review," Applied Nanoscience 10, 1369-1378 (2020).
39. E. D. Martínez, A. Prado, M. Gonzalez, S. Anguiano, L. Tosi, L. Salazar Alarcón, and H. Pastoriza, "Recent Advances on Nanocomposite Resists With Design Functionality for Lithographic Microfabrication," Frontiers in Materials 8 (2021).
40. J. Marqués-Hueso, R. Abargues, J. Canet-Ferrer, S. Agouram, J. L. Valdés, and J. P. Martínez-Pastor, "Au-PVA nanocomposite negative resist for one-step three-dimensional e-beam lithography," Langmuir 26, 2825-2830 (2010).
41. Y.-J. Chen, W.-H. Chang, C.-Y. Li, Y.-C. Chiu, C.-C. Huang, and C.-H. Lin, "Direct synthesis of monolayer gold nanoparticles on epoxy based photoresist by photoreduction and application to surface-enhanced Raman sensing," Materials & Design 197, 109211 (2021).
42. Y.-J. Chen, W.-H. Chang, and C.-H. Lin, "Selective Growth of Patterned Monolayer Gold Nanoparticles on SU-8 through Photoreduction for Plasmonic Applications," ACS Applied Nano Materials 4, 229-235 (2021).
43. T. Smith, and J. Guild, "The C.I.E. colorimetric standards and their use," Transactions of the Optical Society 33, 73-134 (1931).
44. R. Shafiq, A. D. Khan, F. F. Al-Harbi, F. Ali, A. Armghan, M. Asif, A. U. Rehman, E. M. Ali, F. Arpanaei, M. Alibakhshikenari, and M. Dalarsson, "Optical Transmission Plasmonic Color Filter with Wider Color Gamut Based on X-Shaped Nanostructure," Photonics 9 (2022).
45. M. Song, D. Wang, S. Peana, S. Choudhury, P. Nyga, Z. A. Kudyshev, H. Yu, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Colors with plasmonic nanostructures: A full-spectrum review," Applied Physics Reviews 6, 041308 (2019).
46. X. Liu, D. Li, X. Sun, Z. Li, H. Song, H. Jiang, and Y. Chen, "Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers," Sci Rep 5, 12555 (2015).
47. C. Wu, X. Zhou, and J. Wei, "Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction," Nanoscale Research Letters 10, 354 (2015).
48. R. X. He, R. Liang, P. Peng, and Y. Norman Zhou, "Effect of the size of silver nanoparticles on SERS signal enhancement," Journal of Nanoparticle Research 19, 267 (2017).
49. E. J. Bailey, and K. I. Winey, "Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review," Progress in Polymer Science 105, 101242 (2020).
50. M. Esposito, F. Todisco, S. Bakhti, A. Passaseo, I. Tarantini, M. Cuscunà, N. Destouches, and V. Tasco, "Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances," Nano Letters 19, 1922-1930 (2019).
51. S. Song, X. Ma, M. Pu, X. Li, K. Liu, P. Gao, Z. Zhao, Y. Wang, C. Wang, and X. Luo, "Actively Tunable Structural Color Rendering with Tensile Substrate," Advanced Optical Materials 5, 1600829 (2017).
52. Z. Xu, N. Li, Y. Dong, Y. H. Fu, T. Hu, Q. Zhong, Y. Zhou, D. Li, S. Zhu, and N. Singh, "Metasurface-based subtractive color filter fabricated on a 12-inch glass wafer using a CMOS platform," Photon. Res. 9, 13-20 (2021).
53. C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2, 1500030 (2015).
54. T. J. Jayeoye, O. F. Nwabor, and T. Rujiralai, "Synthesis of highly stable and dispersed silver nanoparticles/poly(vinyl alcohol-co-ethylene glycol)/poly(3-aminophenyl boronic acid) nanocomposite: Characterization and antibacterial, hemolytic and cytotoxicity studies," Journal of Industrial and Engineering Chemistry 89, 288-300 (2020).
校內:2027-07-26公開