簡易檢索 / 詳目顯示

研究生: 陳維倫
Chen, Wei-Lun
論文名稱: 基於微控制器之無線感測網路系統於智慧工廠之應用發展:邊緣運算、網路資安、及工業機聯網
Development of Microcontroller-Based Wireless Sensing Network System with Edge Computation, Network Security, and Industrial Internet of Things for Smart Factory Applications
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 211
中文關鍵詞: 工業物聯網微控制器邊緣運算資訊安全輕量化通訊協定無線狀態監控
外文關鍵詞: Industry 4.0, MCU edge computing, Information security, MQTT wireless communication, Remote monitoring and control
相關次數: 點閱:63下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業4.0浪潮的推動以及網路資訊技術的蓬勃發展,智慧工廠的自動化技術正快速地融合網路科技技術,目標為打造高可靠度及響應速度的智能規劃執行系統,並拓展工業物聯網(Industry Internet of Things, IIoT)的發展應用以提升整廠運作的產能與良率。然而將廠內多樣化的生產設備缺乏一致性的通訊標準,在資訊整合上面臨成本與技術考量,再者,新興網路攻擊亦讓智慧工廠面臨資安挑戰,因此低成本且高處理效能之微控制器(Microcontroller Unit, MCU)成為產業快速轉型成智慧製造的重要角色,其體積小且多樣化的通訊介面能夠整合感測器、致動器與通訊模組形成微型化的資料擷取裝置,並結合邊緣運算以及資安網路通訊技術後可快速建立一個可靠且安全的無線感測網路系統(Wireless Sensor Network, WSN)。然而多數針對微控制器之研究著墨於感測器的結合應用與物聯網通訊,不僅較缺乏邊緣運算、資安輕量化網路通訊以及與整廠資訊整合互動之功能,還缺乏對微控制器量測之訊號與運算結果的準確性進行驗證比較,因此本文根據台灣國內三大智慧工廠的實際應用需求,以微控制器為核心發展上述相關技術後對整體性能進行實驗驗證,並實現遠端狀態監控、多機互動以及資安跨區域傳輸等三大使用情境,最後於實驗室規模下將其整合展示。根據實驗結果,本文發展之微控制器於量測準確度上與市售資料擷取卡結果大致相同,而透過邊緣運算可萃取高準確度之訊號特徵並同時大幅減少通訊延遲,最後所加入的資安機制亦可有效阻擋外部設備連線並將傳輸資料加密以避免機密洩漏。綜合上述結果,本研究成功以微控制器結合網路通訊技術並建立可靠、安全且高效率的無線感測網路系統,未來此研究成果可被拓展至真實工廠的單機智能化與整廠智能化等相關應用,增進智慧工場的實務應用價值。

    In recent years, the concept of Industry 4.0 has been put forward to emphasize the cyber-physical system (CPS) applications in smart factories. However, modern smart factories are facing the challenges of handling data growth and communication security, which would lead to serious network latency and cyber attacks. As the result, effective edge computation, high-speed wireless communications, and high-security level protocols would be essential to improve both operational efficiency and data safety. To accomplish such a perspective, this thesis develops a microcontroller (MCU) based IoT module, demonstrating three important scenarios in the smart factory, including remote status monitoring, multi robots interaction, and secure wide area network transport for achieving such goals. To meet the demands of the real factory, the NuMaker-IoT-M487 board, which is embedded with the NuMicro® M487JIDAE 32-bit microcontroller and the ESP8266 Wi-Fi module, is served as the carrier for realizing various types of I/O for data acquisition (DAQ), high-performance data computation, and Wi-Fi transmission. Currently, signal frequency below 4 kHz can be successfully identified with a resolution of 0.98 Hz. As for information security, authentication is configured to verify the identity of message queuing telemetry transport (MQTT) clients, and messages are encrypted by public key infrastructure (PKI) certification. Furthermore, the Wi-Fi module utilizes the MQTT protocol and achieves a data rate of 7.5 KB/s, which indicates at least 40 signal features can be transmitted per second. In parallel, the corresponding cloud platform and database are established, and a dashboard is created for monitoring the status of machines for subsequent manufacturing decision systems. Finally, a demonstration constituted of a machine tool for status monitoring and Automated guided vehicles (AGVs) for subsequent maintenance scheduling is successfully performed to elucidate the possible application potentials of the developed module for bridging manufacturing and logistic equipment or acting as a liaison between physical modules and decision-making control. In summary, based on the demonstrated performance, it is believed that the designed module should be very useful for related intelligent manufacturing applications in the near future.

    摘要 I Abstract II Extended Abstract III 致謝 XXIII 目錄 XXV 圖目錄 XXX 表目錄 XXXVIII 縮寫說明 XXXIX 符號說明 XLII 第一章 緒論 1 1.1 前言 1 1.2 智慧工廠實際情境 6 1.3 文獻回顧 11 1.3.1 感測器狀態監控 11 1.3.2 微控制器訊號擷取與邊緣運算 12 1.3.3 物聯網通訊協定 13 1.3.4 物聯網雲端平台應用 14 1.4 研究動機與目的 16 1.5 實驗室相關研究 18 1.6 研究方法 21 1.7 全文架構 22 第二章 研究背景 24 2.1 本章介紹 24 2.2 工業物聯網與嵌入式系統 26 2.2.1 工業物聯網簡介 26 2.2.2 微控制器與嵌入式系統 28 2.2.3 嵌入式系統相關應用 29 2.3無線感測網路與微機電感測器 32 2.3.1 無線感測網路簡介 32 2.3.2 微機電感測器 34 2.3.3 無線感測網路相關應用 35 2.4 邊緣運算與訊號特徵擷取 37 2.4.1 邊緣運算簡介 37 2.4.2 微控制器邊緣運算與特徵擷取 39 2.5 網路通訊協定與資訊安全 41 2.5.1 網路通訊協定簡介 41 2.5.2 網路資訊安全 43 2.6雲端平台與使用者介面 46 2.6.1 物聯網雲端平台 47 2.6.2 使用者介面 48 2.7文獻評論 51 2.8 本章結論 53 第三章 整體研究概念設計 54 3.1 本章介紹 54 3.2 情境設計 56 3.3 研究流程規劃 59 3.4 嵌入式系統設計與開發 61 3.5 工業物聯網與資安通訊 63 3.6 雲端平台系統建立與應用 65 3.7 本章結論 67 第四章 嵌入式系統設計與微控制器開發 68 4.1 本章介紹 68 4.2 嵌入式系統整體設計 69 4.2.1 微控制器之選用與規格介紹 70 4.2.2 韌體設計規劃 74 4.3 微控制器訊號擷取 75 4.3.1 數位訊號讀取 75 4.3.2 類比訊號擷取 76 4.3.3 類比數位轉換器性能測試 78 4.4 Wi-Fi無線網路與通訊協定 80 4.4.1 Wi-Fi無線網路 81 4.4.2 網路通訊協定 83 4.4.3 無線通訊測試實驗 85 4.5 邊緣運算與訊號分析 88 4.4.1 時域特徵 89 4.4.2 頻域特徵 91 4.6 微控制器於智慧工廠之實際應用 93 4.7 測試實驗建置與邊緣運算結果 94 4.7.1 微控制器多通道測試實驗 95 4.7.2 微控制器量測準確性實驗建立與測試結果 97 4.7.3 微控制器邊緣運算實驗建立與測試結果 103 4.8 討論與本章結論 107 第五章 工業物聯網及資訊安全概論與規劃 109 5.1 本章介紹 109 5.2 工業控制資訊安全標準 111 5.3廣域網路與資訊安全之情境說明 114 5.4 資料傳輸品質 117 5.5 身分驗證機制 119 5.6 公開金鑰基礎建設 121 5.7 區域網路與廣域網路資訊交流 124 5.8 智慧工廠之資安應用情境介紹 125 5.9 本章結論 127 第六章 雲端監控平台系統之建立與展示 128 6.1 本章介紹 128 6.2 情境說明 130 6.3 雲端系統平台之選用 131 6.4資訊整合、雲端分析與人機介面之程序建立 134 6.5 人機介面警報通知與決策回授之程序建立 137 6.6 雲端資料庫之選用與建立 140 6.7 本章結論 142 第七章 遠端狀態監控、多機互動與資安防護機制整合展示 143 7.1 本章介紹 143 7.2 情境說明 145 7.3 機電感測器應用、安裝與數據處理 148 7.3.1 感測器介紹與應用規劃 148 7.3.2硬體安裝與韌體撰寫 151 7.3.3雲端數據處理與分析規劃 154 7.4 工具機與無人搬運車狀態監控 155 7.5 工具機與多無人搬運車互動 157 7.6 跨區域資訊安全傳輸 160 7.7 討論與本章結論 162 第八章 研究結果與討論 163 8.1 全文歸納 163 8.2 整合成果與相關開發技術討論 167 8.3 未來工作 177 第九章 結論與未來展望 182 9.1 本文結論 182 9.2 本文貢獻 184 9.3 未來工作 186 參考文獻 187 附錄A 硬體規格表 198 附錄B 微控制器程式碼 200 A. M487 MCU ADC程式碼 200 B. M487 MCU Edge Computing and MQTT Communication程式碼 205

    [1] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges,” IEEE Access, vol. 6, pp. 6505-6519, Dec. 2017.
    [2] B. Bordel, R. Alcarria, M. A. Manso, and A. Jara, “Building Enhanced Environmental Traceability Solutions: From Thing-to-Thing Communications to Generalized Cyber-Physical Systems,” Journal of Internet Services and Information Security, vol. 7, no. 2, pp. 17-33, Aug. 2017.
    [3] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial internet of things (IIoT): An analysis framework,” Computers in Industry, vol. 101, pp. 1-12, Oct. 2018.
    [4] IEI Integration Corp., AI in Smart Factory. [Online]. Available: https://www.ieiworld.com/smart-factory/tw/aiot-factory.php. [Accessed Jan. 15, 2022].
    [5] K. T. Chung and A. Geddam, “A multi-sensor approach to the monitoring of end milling operations,” Journal of Materials Processing Technology, vol. 139, no. 1, pp. 15-20, 2003.
    [6] Y. Fang, Y. Lim, S. E. Ooi, C. Zhou, Y. Tan, “Study of Human Thermal Comfort for Cyber–Physical Human Centric System in Smart Homes,” Sensors, vol. 20, no. 2: 372, Jan. 2020.
    [7] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K. Ueda, “Cyber-physical systems in manufacturing,” CIRP Annals, vol. 65, no. 2, pp. 621-641, 2016.
    [8] C. Gröger and C. Stach, “The Mobile Manufacturing Dashboard,” IEEE International Conference on Pervasive Computing and Communications Workshops, Budapest, Hungary, pp. 138-140, Mar. 2014.
    [9] C. Gröger, M. Hillmann, F. Hahn, B. Mitschang, and E. Westkämper, “The Operational Process Dashboard for Manufacturing,” Procedia CIRP, vol. 7, pp. 205-210, 2013.
    [10] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research on Cloud Robotics and Automation,” IEEE Transactions on Automation Science and Engineering, vol. 12, no. 2, pp. 398-409, Jan. 2015.
    [11] R. E. Andersen, E. B. Hansen, D. Cerny, S. Madsen, B. Pulendralingam, S. Bøgh, and D. Chrysostomou, “Integration of a skill-based collaborative mobile robot in a smart cyber-physical environment,” 27th International Conference on Flexible Automation and Intelligent Manufacturing, Procedia Manufacturing, vol. 11, pp. 114-123, 2017.
    [12] S. Mumtaz, A. Alsohaily, Z. Pang, A. Rayes, K. F. Tsang, and J. Rodriguez, “Massive Internet of Things for Industrial Applications: Addressing Wireless IIoT Connectivity Challenges and Ecosystem Fragmentation,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 28-33, Mar. 2017.
    [13] Q. Qi, D. Zhao, T. W. Liao, and F. Tao, “Modeling of Cyber-Physical Systems and Digital Twin Based on Edge Computing, Fog Computing and Cloud Computing Towards Smart Manufacturing,” ASME 2018 13th International Manufacturing Science and Engineering Conference, Texas, USA, pp. 1-7, Jun. 2018.
    [14] C. H. Chen, M. Y. Lin, and C. C. Liu, “Edge Computing Gateway of the Industrial Internet of Things Using Multiple Collaborative Microcontrollers,” IEEE Network, vol. 32, no. 1, pp. 24-32, Jan. 2018.
    [15] Y. F. Qin, D. Wang, and Y. P. Yang, “Integrated cutting force measurement system based on MEMS sensor for monitoring milling process,” Microsystem Technologies, vol. 26, no. 5, pp. 2095-2104, Jun. 2020.
    [16] Matahari, N. B. A. Karna, and R. M. Negara, “Design Product Spectrum Analyzer Using Arduino to Analyze Signal Spectrum in 32-Band Audio,” E-Proceeding of Engineerin, vol. 7, no. 3, pp. 9028-9037, Dec. 2020.
    [17] Muladi, A. Firmansah, I. A. E. Zaeni, A. N. Handayani, I. M. Wirawan, and G. J. Horng, “Adaptive power management for self-powered IoT on smart shoes,” AIP Conference Proceedings, vol. 2228, no. 1, pp. 1-7, Apr. 2020.
    [18] IoT Design Pro, IoT Based Temperature and Humidity Monitoring over ThingSpeak using Arduino UNO and ESP8266. [Online]. Available: https://iotdesignpro.com/projects/temperature-humidity-monitoring-over-thingspeak-using-arduino-esp8266. [Accessed Jan. 15, 2022].
    [19] A. Jaber and R. Bicker, “Real-Time Wavelet Analysis of a Vibration Signal Based on Arduino-UNO and LabVIEW,” International Journal of Materials Science and Engineering, vol. 3, no. 1, pp. 66-70, Jan. 2015.
    [20] C. Reddy, S. Shenoy, and R. Sharma, “Vibration analysis of cantilever beam in time domain and frequency domain using Arduino platform,” Vibroengineering PROCEDIA, vol. 29, no. 1, pp. 1-5, Nov. 2019.
    [21] M. Stusek, K. Zeman, P. Masek, J. Sedova, and J. Hosek, “IoT Protocols for Low-power Massive IoT: A Communication Perspective,” The 11th International Congress on Ultra Modern Telecommunications and Control Systems, Ireland, Dublin, pp. 1-7, Oct. 2019.
    [22] A. Tsuchiya, F. Fraile, I. Koshijima, A. Órtiz, and R. Poler, “Software defined networking firewall for industry 4.0 manufacturing systems,” Journal of Industrial Engineering and Management, vol. 11, no. 2, pp. 318-332, Apr. 2018.
    [23] M. Lekić and G. Gardašević, “IoT sensor integration to Node-RED platform,” 2018 17th International Symposium INFOTEH-JAHORINA, East Sarajevo, Bosnia and Herzegovina, pp. 1-5, Mar. 2018.
    [24] AutomativeWorld, Is the Purdue Model Still Relevant?. [Online]. Available: https://www.automationworld.com/factory/iiot/article/21132891/is-the-purdue-model-still-relevant. [Accessed Jan. 15, 2022].
    [25] J. M. Tsai, I. C. Sun, and K. S. Chen, “Realization and Performance Evaluation of a Machine Tool Vibration Monitoring Module by Multiple MEMS Accelerometer Integrations,” International J. Advanced Manufacturing Technology, vol. 114, pp. 465–479, 2021.
    [26] A. Carpinteri, G. Lacidogna, and N. Pugno, “Structural damage diagnosis and life-time assessment by acoustic emission monitoring,” Engineering Fracture Mechanics, vol. 74, no. 1-2, pp. 273-289, Jan. 2007.
    [27] A. D. Nembhard, J. K. Sinha, A. J. Pinkerton, and K. Elbhbah, “Fault diagnosis of rotating machines using vibration and bearing temperature measurements,” Diagnostyka, vol. 14, no. 3, pp. 45-51, 2013.
    [28] D. Zhu, X. Yi, Y. Wang, K. M. Lee, and J. Guo, “A mobile sensing system for structural health monitoring: design and validation,” Smart Materials and Structures, vol. 19, no. 5, pp. 1-11, May. 2010.
    [29] M. Abdallah and O. Elkeelany, “A Survey on Data Acquisition Systems DAQ,” 2009 International Conference on Computing, Engineering and Information, Fullerton, CA, USA , pp. 240-243, Apr. 2009.
    [30] T. Kono, Y. Taito, Y. Wang, and H. Hidaka, “Essential Roles, Challenges and Development of Embedded MCU Micro-Systems to Innovate Edge Computing for the IoT/AI Age,” IEICE Transactions on Electronics, vol. E103–C, no. 4, pp. 132-143, Apr. 2020.
    [31] C. Mi, T. Zhou, B. Wei, Y. Wang, and L. Zou, “Design of high-accuracy eight-channel surface electromyography acquisition system and its application,” The European Physical Journal Special Topics, vol. 227, pp. 933-942, Oct. 2018.
    [32] A. Shukla, M. Mahmud, and W. Wang, “A smart sensor-based monitoring system for vibration measurement and bearing fault detection,” Measurement Science and Technology, vol. 32, no. 10, pp. 1-14, Jul. 2020.
    [33] M. Vishwakarma, R. Purohit, V. Harshlata, and P. Rajput, “Vibration Analysis & Condition Monitoring for Rotating Machines: A Review,” Materials Today: Proceedings, vol. 4, no. 2, pp. 2659-2664, Dec. 2017.
    [34] I. C. Sun. R. C. Cheng, and K-S Chen, “Evaluation of Transducer Signature Selections on Machine Learning Performance in Cutting Tool Wear Prognosis,” International J. Advanced Manufacturing Technology, (Accepted, Dec. 03, 2021).
    [35] A. J. C. Trappey, C. V. Trappey, U. H. Govindarajan, A. C. Chuang, and J. J. Sun, “A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0,” Advanced Engineering Informatics, vol. 33, pp. 208-229, Aug. 2017.
    [36] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos, “Software-Defined Industrial Internet of Things in the Context of Industry 4.0,” IEEE Sensors Journal, vol. 16, no. 20, pp. 7373-7380, Oct. 2016.
    [37] Y. J. Lin, C.-B. Lan, and C. Y. Huang, “A Realization of Cyber-Physical Manufacturing Control System Through Industrial Internet of Things,” Procedia Manufacturing, vol. 39, pp. 287-293, Aug. 2019.
    [38] D. Junesco, E. Supriyanto, A. Hasan, and M. Mukhlisin, “QoS analysis of WSN (Wireless Sensor Network) using node MCU and accelerometer sensors on bridge monitoring systems,” IOP Conference Series Materials Science and Engineering, vol. 1108, no. 1: 012025, Mar. 2021.
    [39] M. S. Alam, U. D. Atmojo, J. O. Blech, and J. L. M. Lastra, “A REST and HTTP-based Service Architecture for Industrial Facilities,” 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, pp. 398-401, Jun. 2020.
    [40] R. A. Atmoko and D. Yang, “Online Monitoring & Controlling Industrial Arm Robot Using MQTT Protocol,” 2018 IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (Robionetics), Bandung, Indonesia, pp. 12-16, Aug. 2018.
    [41] M. Ghazivakili, C. Demartini, and C. Zunino, “Industrial data-collector by enabling OPC-UA standard for Industry 4.0,” 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), Imperia, Italy, pp. 1-8, Jun. 2018.
    [42] K. L. Tsai, Y. L. Huang, F. Y. Leu, I. You, Y. L. Huang, and C. H. Tsai, “AES-128 Based Secure Low Power Communication for LoRaWAN IoT Environments,” IEEE Access, vol. 6, pp. 45325-45334, Jul. 2018.
    [43] R. S. Bali, F. Jaafar, and P. Zavarasky, “Lightweight authentication for MQTT to improve the security of IoT communication,” Proceedings of the 3rd International Conference on Cryptography, Security and Privacy, Kuala Lumpur, Malaysia, pp. 6-12, Jan. 2019.
    [44] W. Hummer, V. Muthusamy, T. Rausch, P. Dube, K. E. Maghraoui, A. Murthi, and P. Oum, “ModelOps: Cloud-based Lifecycle Management for Reliable and Trusted AI,” 2019 IEEE International Conference on Cloud Engineering (IC2E), Prague, Czech Republic, pp. 113-120, Aug. 2019.
    [45] K. Ferencz and J. Domokos, “Using Node-RED platform in an industrial environment,” Conference: XXXV. Jubileumi Kandó Konferencia, Budapest, Hungary, pp. 52-63, Feb. 2020.
    [46] K. Židek, J. Pitel’, M. Adámek, P. Lazorík, and A. Hošovský, “Digital Twin of Experimental Smart Manufacturing Assembly System for Industry 4.0 Concept,” Sustainability, vol. 12, no. 9: 3658, May. 2020.
    [47] 黃彥享, 應用於工具機主軸監測之數位微機電感測模組整合設計與驗證, 南臺科技大學機械工程系碩士論文, 2020.
    [48] 鄭人齊, 基於自編碼器之非監督式失效辨別方法建立及其於軸承狀態診斷的應用, 國立成功大學機械工程學系碩士論文, 2021.
    [49] T. H. Li, K. S. Chen, and S. Vechet, “Development and Demonstration of Indoor Three-Dimensional Localization Using IR CMOS Sensors for Mobile Manipulators,” Sensors and Actuators A: Physical, vol. 318: 112497, 2021.
    [50] 黃建達, 具任務規劃、人機整合、及狀態監控能力之無人搬運車發展及其於智慧工廠之應用, 國立成功大學機械工程學系碩士論文, 2020.
    [51] 韓伯炫, 機械手臂動態分析、視覺引導、及感測器網路整合於智慧工廠之應用, 國立成功大學機械工程學系碩士論文, 2020.
    [52] RFID Journal, That ‘Internet of Things’ Thing. [Online]. Available: https://www.rfidjournal.com/that-internet-of-things-thing. [Accessed Jan. 15, 2022].
    [53] J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp. 18-23, Jan. 2015.
    [54] Electronics Hub, Basics of Microcontrollers – History, Structure and Applications. [Online]. Available: https://www.electronicshub.org/microcontrollers-basics-structure-applications/. [Accessed Jan. 15, 2022].
    [55] F. Samie, L. Bauer, and J. Henkel, “IoT technologies for embedded computing: A survey,” 2016 International Conference on Hardware/Software Codesign and System Synthesis, Pittsburgh, PA, USA, pp. 1-10, Nov. 2016.
    [56] V. Nguyen, S. Melkote, A. Deshamudre, and M. Khanna, “PVDF sensor based on-line mode coupling chatter detection in the boring process,” Manufacturing Letters, vol. 16, pp. 40-43, Apr. 2018.
    [57] J. W. Liu, X. Y. Zhong, X. F. Peng, , J. Tian, and C. S. Zou, “Design and Implementation of New AGV System Based on Two-layer Controller Structure,” 2018 37th Chinese Control Conference, Wuhan, China, pp. 5340-5346, Jul. 2018.
    [58] E. A. Kadir, H. Irie, and S. L. Rosa, “River Water Pollution Monitoring using Multiple Sensor System of WSNs (Case: Siak River, Indonesia),” 2019 6th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Bandung, Indonesia, pp. 75-79, Sep. 2019.
    [59] Palo Alto Networks, 2020 Unit 42 IoT Threat Report. [Online]. Available: https://unit42.paloaltonetworks.com/iot-threat-report-2020/. [Accessed Jan. 15, 2022].
    [60] Smart Dust, Autonomous sensing and communication in a cubic millimeter. [Online]. Available: https://people.eecs.berkeley.edu/~pister/SmartDust/. [Accessed Jan. 15, 2022].
    [61] S. Ali, S. B. Qaisar, H. Saeed, M. F. Khan, M. Naeem, and A. Anpalagan, “Network Challenges for Cyber Physical Systems with Tiny Wireless Devices: A Case Study on Reliable Pipeline Condition Monitoring,” Sensors, vol. 15, no. 4, pp. 7172-7205, Apr. 2015.
    [62] Y. Liu, K. D. Tong, F. Mao, and J. Yang, “Research on digital production technology for traditional manufacturing enterprises based on industrial Internet of Things in 5G era,” The International Journal of Advanced Manufacturing Technology, vol. 107, pp. 1101-1114, 2020.
    [63] MOXA, Smart Wireless Sends Warehouses Into Smart Territory. [Online]. Available: https://www.moxa.com/en/case-studies/smart-wireless-sends-warehouses-into-smart-territory. [Accessed Jan. 15, 2022].
    [64] Y. Zeng, J. B. Lyu, and R. Zhang, “Cellular-Connected UAV: Potential, Challenges, and Promising Technologies,” IEEE Wireless Communications, vol. 26, no. 1, pp. 120-127, Feb. 2019.
    [65] IoT-Now, The Smart Home radio protocols war. [Online]. Available: https://www.iot-now.com/2015/08/10/35653-the-smart-home-radio-protocols-war/. [Accessed Jan. 15, 2022].
    [66] F. L. Lewis, “Wireless Sensor Networks,” Smart environments: Technologies, Protocols, and Applications, New York, USA, pp. 11-46, Sep. 2004.
    [67] V. Nguyen, P. F. Zelaia, and S. N. Melkote, “PVDF sensor based characterization of chip segmentation in cutting of Ti-6Al-4V alloy,” CIRP Annals, vol. 66, no. 1, pp. 73-76, Apr. 2017.
    [68] 台灣儀器科技研究中心, 加速規與溫度感測器. [Online]. Available: https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/221/02210040.pdf. [Accessed Jan. 15, 2022].
    [69] V. P. Raj, K. Natarajan, and S. T. G. Girikumar, “Induction motor fault detection and diagnosis by vibration analysis using MEMS accelerometer,” 2013 International Conference on Emerging Trends in Communication, Control, Signal Processing and Computing Applications (C2SPCA), Bangalore, pp. 1-6, India, Oct. 2013.
    [70] C. L. Tseng, C. S. Cheng, Y. H. Hsu, B. H. Yang, and J. H. Zheng, “Cloud Factory Environment Monitoring Using Energy-Harvesting Wireless Sensor Networks,” 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, pp. 2436-2441, Oct. 2018.
    [71] D. Mourtzis, E. Vlachou, N. Xanthopoulos, M. Givehchi, and L. H. Wang, “Cloud-based adaptive process planning considering availability and capabilities of machine tools,” Journal of Manufacturing Systems, vol. 39, pp. 1-8, Apr. 2018.
    [72] W. Yu, F. Liang, X. F. He, W. G. Hatcher, C. Liu, J. Lin, and X. Y. Yang, “A Survey on the Edge Computing for the Internet of Things,” IEEE Access, vol. 36, pp. 6900-6919, Nov. 2017.
    [73] Q. L. Qi and F. Tao, “A Smart Manufacturing Service System Based on Edge Computing, Fog Computing, and Cloud Computing,” IEEE Access, vol. 7, pp. 86769-86777, Jun. 2019.
    [74] C. C. Du, S. Gao, N. S. Jia, D. R. Kong, J. Jiang, G. Y. Tian, Y. Su, Q. M. Wang, and C. Q. Li, “A High-Accuracy Least-Time-Domain Mixture Features Machine-Fault Diagnosis Based on Wireless Sensor Network,” IEEE Systems Journal, vol. 14, no. 3, pp. 4101-4109, Sep. 2020.
    [75] ISO.org, Open System Intersonnection (OSI). [Online]. Available: https://www.iso.org/ics/35.100/x/. [Accessed Jan. 15, 2022].
    [76] J. P. Ogle, M. D. Touhiduzzaman, P. T. Mana, and N. Samman, “Assessment of CReST- VCT Deployment in Real- Time Environments,” Communication Systems Examination, pp. 1-22, May 2019.
    [77] X. Ye and S. H. Hong, “An AutomationML/OPC UA-based Industry 4.0 Solution for a Manufacturing System,” 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Turin, Italy, pp. 543-550, Sep. 2018.
    [78] Manufacturing Business Technology, How to Integrate Automation Data with Industrial Messaging Protocols. [Online]. Available: https://www.mbtmag.com/best-practices/article/21172575/how-to-integrate-automation-data-with-mqttsparkplug-b. [Accessed Jan. 15, 2022].
    [79] B. Bhushan and G. Sahoo, “Recent Advances in Attacks, Technical Challenges, Vulnerabilities and Their Countermeasures in Wireless Sensor Networks,” Wireless Personal Communications, vol. 98, no. 2, pp. 2037-2077, Jan. 2018.
    [80] ORACLE, Introduction to API Gateway OAuth 2.0 server. [Online]. Available: https://docs.oracle.com/cd/E55956_01/doc.11123/oauth_guide/content/oauth_intro.html. [Accessed Jan. 15, 2022].
    [81] C. Dener, J. Watkins, and W. Dorotinsky, Financial Management Information Systems: 25 Years of World Bank Experience on What Works and What Doesn’t. World Bank Group, 2011.
    [82] M. S. Panahi, P. Woods, and H. Thwaites, “Designing and developing a location-based mobile tourism application by using cloud-based platform,” 22013 International Conference on Technology, Informatics, Management, Engineering and Environment, Bandung, Indonesia, pp. 151-156, Jun. 2013.
    [83] M. Domínguez, R. G. Herbón, J. R. R. Ossorio, J. J. Fuertes, M. A. Prada, and A. Morán, “Development of a Remote Industrial Laboratory for Automatic Control based on Node-RED,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 17210-17215, 2020.
    [84] L. N. Demeter, R. Calistru, B. Vărăticeanu, P. Minciunescu, and P. Angheliță, “Cloud-based Maintenance IIoT Platform for Smart Manufacturing,” Proceedings in Manufacturing Systems, vol. 15, no. 3, pp. 113-119, 2020.
    [85] Analog Device, Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor [Online]. Available: https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf. [Accessed Jan. 15, 2022].
    [86] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, and B. Walke, “IEEE 802.11s: The WLAN Mesh Standard,” IEEE Wireless Communications, vol. 17, no. 1, pp. 104-111, Feb. 2010.
    [87] 經濟部, 工控物聯網共通性資安指南 [Online]. Available: https://www.acw.org.tw/UpFiles/01-%E5%B7%A5%E6%8E%A7%E7%89%A9%E8%81%AF%E7%B6%B2%E5%85%B1%E9%80%9A%E6%80%A7%E8%B3%87%E5%AE%89%E6%8C%87%E5%8D%97.pdf. [Accessed Jan. 27, 2022].
    [88] International Electrotechnical Commission, IEC62443-3-3[Online]. Available: https://webstore.iec.ch/preview/info_iec62443-3-3%7Bed1.0%7Den.pdf. [Accessed Jan. 15, 2022].
    [89] International Electrotechnical Commission, IEC62443-4-1[Online]. Available: https://webstore.iec.ch/preview/info_iec62443-4-1%7Bed1.0%7Den.pdf. [Accessed Jan. 15, 2022].
    [90] S. Andy, B. Rahardjo, and B. Hanindhito, “Attack scenarios and security analysis of MQTT communication protocol in IoT system,” 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, pp. 1-6, Sep. 2017.
    [91] B. Sreejith, A. K. Verma, and A. Srividya, “Fault diagnosis of rolling element bearing using time-domain features and neural networks,” 2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems, Kharagpur, India, pp. 1-6, Dec. 2008.
    [92] D. Yu, J. S. Cheng, and Y. Yu, “Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings,” Mechanical Systems and Signal Processing, vol.19, pp. 259-270, 2005.
    [93] F. Zafari, A. Gkelias, and K. K. Leung, “A survey of indoor localization systems and technologies,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019.
    [94] K. Heurtefeux and F. Valois, “Is RSSI a Good Choice for Localization in Wireless Sensor Network?,” 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, pp. 732-739, Mar. 2012.
    [95] F. Gu, X. Hu, M. Ramezani, D. Acharya, K. Khoshelham, S. Valaee, and J. Shang, “Indoor Localization Improved by Spatial Context—A Survey,” ACM Computing Surveys, vol. 53, no. 2, pp. 1-35, Jul. 2019.
    [96] G. H. Zhou, C. Zhang, Z. Li, K. Ding, and C. Wang, “Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing,” International Journal of Production Research, pp. 1034-1051, Apr. 2019.
    [97] MicroChip, 如何在Cortex® M7 MCU中使用差分ADC [Online]. Available:http://mcu.eetrend.com/files/2018-11/wen_zhang_/100015559-52240-32.pdf. [Accessed Jan. 15, 2022].

    下載圖示 校內:2025-01-25公開
    校外:2025-01-25公開
    QR CODE