研究生: |
李冠民 Lee, Kuan-Ming |
---|---|
論文名稱: |
磷砷化銦鎵/砷化銦鎵/磷化銦系列異質接面雙極性電晶體之研製 Fabrication and Study of InGaAsP/InGaAs/InP Heterojunction Bipolar Transistors (HBTs) |
指導教授: |
劉文超
Liu, Wen-Chau |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 磷砷化銦鎵 、異質接面雙極性電晶體 |
外文關鍵詞: | InGaAsP, heterojunction, HBT |
相關次數: | 點閱:66 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中我們研製以低壓有機金屬化學氣相沈積(LP-MOCVD)法成長的磷化銦(InP)系列異質接面雙極性電晶體,主要重點在於傳統元件結構的改良設計,元件特性量測與討論。
我們比較以磷化銦/砷化銦鎵(InP/InGaAs)為基礎的兩種異質接面雙極性電晶體。首先我們以四元材料磷砷化銦鎵(InGaAsP)取代傳統的窄能隙空間層及集極材料砷化銦鎵(InGaAs),稱之為元件A,希望藉此獲得較佳的直流增益及崩潰電壓特性。另一方面,設計一僅在基極與集極間加入砷化銦鎵步階組成漸變層之元件,稱之為元件B,比較兩種結構對於元件的直流特性所造成的影響。由實驗數據顯示,兩結構均能有效提升元件的崩潰電壓,分別可達7.84V及6.58V;雖然由於射-基與集-基接面的不對稱性,造成元件A有較大的補償電壓,但是在直流增益方面,元件A的最大直流增益可達118,約為元件B的兩倍,且元件A有超過12個數量級的寬廣電流操作區域,這使得元件A可以廣泛的應用於低損耗功率消耗的電路中,比如說類比-數位轉換器及攜帶式無線通訊器材等。
在我們得到元件A有較好的直流特性的結論之後,我們再使用相同的結構,但是利用碳取代原本用來摻雜基極的鋅,稱之為元件C,由於碳在砷化銦鎵材料中有較低的擴散速率,因此即使增加基極摻雜濃度也不至於使摻雜質擴散至射極,而造成元件特性衰退。由實驗結果得知,由於基極使用了碳摻雜,使得元件C的最大直流增益可以達到368,但是卻犧牲了部分的操作區域,使得由原本的12個數量級的操作區域下降為10個數量級。
In this thesis, we present heterojunction bipolar transistors (HBTs) based on InP-based material system grown by a low-pressure-metal-organic chemical vapor deposition (LP-MOCVD) system. We focus on the improved designs of conventional device structures, the measurement and discussion of the device characteristics.
We investigated an npn InGaAsP/InGaAs/InP, denoted as device A, which has a composite-collector structure designed to improve the breakdown and gain. Then we compared the device performances with an InGaAs/InP utilizing compositionally step graded InGaAs layers between the InGaAs base and InP collector, denoted as device B, to suppress the current blocking effect. From the experimental results, both the structures can improve the breakdown characteristics of the InP-base devices. Although the quaternary material InGaAsP improved the dc characteristics of devices, it also increases the offset voltages of them due to the asymmetry between the E-B and B-C junctions. In the other hand, device A had larger breakdown voltage (7.84V), dc current gain (bmax=118), and operation region (over 12 orders of magnitude of collector current) than device B. This implies that device A can be operated under a very wide current regimes especially in case of low-power system, e.g., A/D or D/A converters and portable wireless communications.
In chapter 3, a carbon-doped base was used to refine device A that is mentioned in chapter 2. It is well known that carbon has rather low diffusion constant in InGaAs to prevent the degradation of the device performance. From the experimental results, device C (carbon-doped base) has a relatively high dc current gain (bmax=368) and a operation regime for 11 orders of magnitude of collector current. These result are conformed to the early studies such as improved gain. Though the dc current gain of device A (zinc-doped base) is only about one-third that of the device C, it exhibits almost flat common-emitter current gain of greater than 4 over 13 orders of magnitude of collector current. It is a quite wide operation range requisite indispensable.
[1] S. S. Tan and A. G. Milnes, “ Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors”, IEEE Trans. Electron Devices, Vol. ED-30, p.1289, 1983.
[2] T. Ishibashi and Y. Yamauchi, “ A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure”, IEEE Trans. Electron Devices, Vol. ED-35, p.401, 1988.
[3] J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “ GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage”, IEEE Electron Device Lett, Vol. EDL-15, p.10, 1994.
[4] H. Kroemer, “Heterojunction Bipolar Transistor: What Should We Build? ” J. Vac. Sci. Technol., vol. B1, pp.126-130, 1983.
[5] S. S. Lu and C. C. Wu, “High-Current-Gain, Small-Offset-Voltage In0.49Ga0.51P/GaAs Tunneling Emitter Bipolar Transistors Grown by Gas-Source Molecular Beam Epitaxy.” IEEE Electron Device Lett., vol.13, pp.468-470, 1992.
[6] H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits.” IEEE Proc., vol.70, pp.13-25, 1982.
[7] H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design.” Appl. Phys. Lett. vol.47, pp.839-841, 1985.
[8] W. C. Liu and W. S. Lour, “An Improved Heterostructure-Emitter Bipolar Transistor (HEBT),” IEEE. Electron Device Lett., vol.12, No.9, pp.474-476,1991.
[9] W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, pp. 1155-1161, 1999.
[10] K. B. Thei, J. H. Tsai, W. C. Liu, and W. S. Lour, “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-St. Electron., vol. 39, pp. 1137-1142, 1996.
[11] W. S. Lour, W. C. Liu, D. F. Guo, and R. C. Liu, “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, pp. 2388-2393, 1992.
[12] D. F. Guo, W. C. Yeou, W. S. Lour, W. C. Hsu, and W. C. Liu, “Regenerative switching phenomenon of a GaAs metal-n-d(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, pp. L1011-L1013, 1993.
[13] W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
[14] W. Shockley, U. S. Patent No. 2 569 347 (Filed June 26, 1948, Issued September 25, 1951).
[15] H. Kroemer, “Theory of a wide-gap emitter for transistors.” Proc. IRE 45, pp. 1535, 1957.
[16] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electrons., 15, 12, 1972.
[17] V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures, Prentice Hall, Upper Saddle River, N.J., 1991.
[18] R. N. Nottenburg, Y. K. Chen, M. B. Panish, D. A. Humphery, and R. Hamm, “Hot-electron InGaAs/InP heterostructure bipolar transistors with ft of 110GHz,” IEEE Electron Devices Lett., vol. 10, pp. 30-32 1989.
[19] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[20] W. M. Webster, “On the variation of junction-transistor current amplification factor with emitter current,” Proc. IRE, vol. 54, pp. 914-920, 1954.
[21] Y. S. Hiraoka, J. Yoshida, and M. Azuma, “Two-dimensional analysis of emitter-size effect on current gain for AlGaAs/GaAs HBT’s,” IEEE Trans. Electron Device, vol. ED-34, pp. 721-725, 1987.
[22] J. H. Tsai, S. Y. Cheng, L. W. Laih, W. C. Liu, and H. H. Lin, “An extremely low offset voltage AlInAs/GaInAs heterostructure-emitter bipolar transistor (HEBT),” Superlattices & Microstructures, vol. 23, pp. 1297-1307, 1998.
[23] W. C. Wang, H. J. Pan, K. B. Thei, K. W. Lin, K. H. Yu, C. C. Cheng, L. W. Laih, S. Y. Cheng, and W. C. Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 15, pp. 935-940, 2000.
[24] W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
[25] C. Y. Chen, W. C. Wang, W. H. Chiou, C. K. Wang, H. M. Chuang, S. Y. Cheng, and W. C. Liu, “A comparative study of GaAs- and InP-based superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's),” Solid-State Electron., vol. 46, pp. 1289-1294, 2002.
[26] G. E. Stillman et al., “Carbon impurities in MOCVD InP,” in GaAs and Related Compounds, 1989 (Karuizawa, Japan, IOP Conf. Ser. 106). Bristol: Institute of Physics, pp. 63-68, 1990.
[27] W. E. Stanchian, R. A. Metzger, T. Liu, P. F. Lou, J. F. Jensen, M. W. Pierce, and L. G. McCray, Jr, “60GHz AlInAs/GaInAs/InP DHBTs grown by MOCVD + MBE,” 1991 DRC Tech. Dig., p. VIA-6.
[28] A. Feygenson, R. A. Hamm, D. Ritter, P. R. Smith, R. K. Montgomery, R. D. Yadvish, and H. Temkin, “High speed InGaAs/InP composite collector bipolar transistors,” 1992 DRC Tech. Dig., p. IVA-6.
[29] K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Minimized collector current blocking in InP/InGaAs DHBTs grown by MOCVD,” presented at 1992 Int. Symp. GaAs Related Compounds, Karuizawa, Japan.
[30] H. Yamada, T. Futatsugi, H. Shigematsu, T. Tomioka, T. Fujii, and N. Yokoyama, “InAlAs/InGaAs double heterojunction bipolar transistors with a collector launcher structure for high-speed ELC applications,” 1991 IEDM Tech. Dig., pp. 964-966.
[31] R. N. Nottenburg, J. C. Bischoff, M. B. Panish, and H. Temkin, “High-speed InGaAs(P)/InP double-heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 8, pp. 282-284, 1987.
[32] R. J. Malik, J. Nagle, M. Micovic, T. Harris, R. W. Ryan, and L. C. Hopkins, “Doping limits of C, Be, and Si in GaAs grown by solid source molecular beam epitaxy with a thermally cracked As source,” J. Vac. Sci. Technol. B, vol. 10, pp. 850-852, March/April 1992.
[33] T. B. Joyce, S. P. Westwater, P. J. Goodhew,, and R. E. Pritchard, “Growth of carbon-doped GaAs, AlGaAs and InGaAs by chemical beam epitaxy and the application of in-situ monitoring,” J. Cryst. Growth, vol. 164, pp. 371-376, 1996.
[34] B. T. Cunningham, L. J. Guido, J. E. Baker, J. S. Major, Jr., N. Holonyak, Jr., and G. E. Stillman, “Carbon diffusion in undoped n-type and p-type GaAs,” Appl. Phys. Lett., vol. 55, pp. 687-689, Aug. 1989.
[35] J.-I. Song, J. R. Hayes, C. Caneau, K. B. Chough, and W.-P. Hong, “GaInP/GaAs double heterojunction bipolar transistors with high fT, fmax, and breakdown voltage,” IEEE Electron Device Lett., vol. 15, pp. 10-12, Jan. 1994.
[36] M. Ilegems, “Beryllium doping and diffusion in molecular-beam epitaxy of GaAs and AlxGa1-xAs,” J. Appl. Phys., vol. 48, pp. 1278-1287, 1997.
[37] S. J. Bass, and P. E. Oliver, “Controlled doping of gallium arsenide produced by vapor epitaxy, using trimethylgallium and arsine,” Inst. Phys. Conf. Ser., Vol. 33b, pp. 1-10, 1977.
[38] W. E. Stanchina, R. A. Metzger, J. F. Jensen, D. B. Rensch, M.W. Pierce, M. J. Delaney, R. G. Wilson, T. V. Kargodorian, and Y. K. Allen, “Improved high frequency performance of AlInAs/GaInAs HBT’s through use of low temperature GaInAs,” in Proc. 2nd Int. Conf. Indium Phosphide and Related Maters., Denver, CO, pp. 13-16, Apr. 1990.
[39] R. C. Gee, T.-P. Chin, C. W. Tu, P. M. Asbeck, C. L. Lin, P. D. Kirchner, and J. M. Woodall, “InP/InGaAs heterojunction bipolar transistors grown by gas-source molecular beam epitaxy with carbon doping base,” IEEE Electron Device Lett., Vol. 13, pp. 247-249, 1992.
[40] A. W. Hanson, S. A. Stockman, and G. E. Stillman, “InP/In0.53Ga0.47As heterojunction bipolar transistors with a carbon-doped base grown by MOCVD,” IEEE Electron Device Lett., Vol. 13, pp. 504-506, 1992.
[41] G.E. Stillman, M. Feng, M. A. Fresina, Q. J. Hartmann, D. A. Ahmari, P. J. Mares, S. Thomas, S. A. Stockman, and L. Jackson, “Carbon-doped HBTs for OEICs,” Solid-State and Integrated Circuit Technology, 1995 4th International Conference on, 24-28 Oct 1995, pp. 379-383
[42] R. J. Malik, R. A. Hamm, R. F. Kopf, R. W. Ryan, R. K. Montgomery, J. Lin, D. A. Humphrey, A. Tate, Y. K. Chen, “Self-aligned thin emitter C-doped base InP/InGaAs/InP DHBT's for high speed digital and microwave IC applications,” Device Research Conference, 1996. Digest. 54th Annual, 24-26 Jun 1996, pp. 40-41.
[43] C. W. Tu, “Carbon-doped p-type In0.53Ga0.47As and its application to InP/In0.53Ga0.47As heterojunction bipolar transistors,” Indium Phosphide and Related Materials, 1993. Conference Proceedings., Fifth International Conference on, 19-22 Apr 1993, pp. 695 -698
[44] R. Bhat, J. R. Hayes, E. Colas, and R. Esagui, “Atomic layer epitaxy grown heterojunction bipolar transistor having a carbon-doped base,” IEEE Electron Device Letters, vol. 9, pp. 442-443, Sep 1988
[45] S. J. Pearton, W. S. Hobson, A. P. Kinsella, J. Kovalchick, U. K. Chakrabarti, and C. R. Abernathy, “Carbon implantation in InGaAs and AlInAs,” Appl. Phys. Lett., vol. 56, pp. 1263-1265, 1990
[46] W. Hanson, S. A. Stockman, and G. E. Stillman, “InP/In0.53Ga0.47As heterojunction bipolar transistors with a carbon-doped base grown by MOCVD,” IEEE Electron Device Letters , vol. 13, pp. 504-506, Oct 1992.
[47] J.-I. Song, C. J. Palmstrom, B. P. Van der Gaag, W.-P. Hong, J. R. Hayes, and K. B. Chough, “High-performance InP/InGaAs heterojunction bipolar transistors with highly carbon-doped base grown by chemical beam epitaxy,” Electronics Letters, vol. 29, pp. 666-667, 15 Apr 1993.
[48] Jong-In Song; W.-P. Hong, C. J. Palmstrom, B. P. Van der Gaag, and Kyung Bae Chough, “A fT=175 GHz carbon-doped base InP/InGaAs HBT,” Electron Devices Meeting, 1993. Technical Digest., International, 5-8 Dec 1993, pp. 787-790.
[49] M. Ida, S.Yamahata, K. Kurishima, H. Ito, T. Kobayashi, and Y. Matsuoka, “Enhancement of fmax in InP/InGaAs HBTs by selective MOCVD growth of heavily-doped extrinsic base regions,” Electron Devices, IEEE Transactions, vol. 43, pp. 1812-1818, Nov 1996.
[50] J. L. Benchimol, J. Mba, A. R. Duchenois, P. Berdaguer, B. Sermage, G. Le Roux, S. Blayac, M. Riet, J. Thuret, C. Gonzalez, and P. Andre, “Improvement of CBE grown InGaAs/InP HBT’s using a carbon doped and compositionally graded base,” Indium Phosphide and Related Materials, 1999. IPRM. 1999 Eleventh International Conference, pp. 559-562, 1999.
[51] D. Cui, D. Pavlidis, and A. Eisenbach, “Characterization of carbon induced lattice contraction of highly carbon doped InGaAs,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference, pp. 526-529, 2000.
[52] S.-O. Kim, P. Velling, U. Auer, M. Agethen, W. Prost, and F.-J. Tegude, “High fT, high current gain InP/InGaAs:C HBT grown by LP-MOVPE with non-gaseous sources,” Indium Phosphide and Related Materials, 2000. Conference Proceedings. 2000 International Conference, pp. 470-472, 2000.
[53] J. C. Han, J. I. Song, S. W. Park, and Deokha Woo, “Growth of ultrahigh carbon-doped InGaAs and its application to InP/InGaAs(C) HBTs,” Electron Devices, IEEE Transactions, vol. 49, pp. 1-6, Jan 2002.
[54] J. C. Campbell, A. G. Dentai, C. A. Burrus, Jr., and J. F. Ferguson, “InP /InGaAs heterojunction phototransistors,” IEEE J. Quantum Electron. QE-17, 264, 1981.
[55] K. Tabatabaie-Alavi, R.J. Markunas and C.G. Fonstad, “LPE-grown InGaAsP/InP heterojunction bipolar transistors,” in Tech. Dig. IEEE IEDM 643, 1979.
[56] M. Tobe, Y.Amemiya, S. Sakai and M. Umeno, “High-sensitivity InGaAsP/InP phototransistors,” Appl. Phys. Lett., vol. 37, pp. 73-75, 1980.
[57] J. H. Tsai, S. Y. Cheng, H. J. Shih, and W. C. Liu, “Functional heterostructure-emitter bipolar transistor (HEBT) with graded-confinement and pseudomorphic-base structure,” Superlattices & Microstructures, vol. 24, pp. 189-195, 1998.
[58] W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp. 630-633, 1998.
[59] H. J. Pan, S. Y. Cheng, W. L. Chang, S. C. Feng, K. H. Yu, and W. C. Liu, “A new In0.53Al0.22Ga0.25As/InP heterojuction bipolar transistor with d-doped continuous-conduction-band (CCB) structure,” IEE Electron. Lett., vol. 35, pp. 428-429, 1999.
[60] S. Y. Cheng, W. C. Wang, W. L. Chang, J. Y. Chen, H. J. Pan, and W. C. Liu, “A new InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Thin Solid Films, vol. 345, pp. 270-272, 1999.
[61] W. C. Wang, J. Y. Chen, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “Study of InGaP/GaAs/InGaP double d-doped heterojunction bipolar transistor,” Superlattices & Microstructures, vol. 26, pp. 23-33, 1999.
[62] S. Y. Cheng, H. J. Pan, S. C. Feng, K. H. Yu, and W. C. Liu, “New wide voltage operation regime double heterojunction bipolar transistor,” Solid-State Electron., vol. 44, pp. 581-585, 2000.
[63] W. C. Wang, H. J. Pan, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, S. Y. Cheng, and W. C. Liu, “ Photonic-sensitive InAlGaAs/InP negative-differential- resistance heterojunction bipolar transistor,” Superlattices & Microstructures, vol. 29, pp. 359-365, 2001.
[64] H. Kanbe, J.C. Vlcek and C.G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase wpitaxy with high dc current gain,” IEEE Electron Device Lett. EDL-5, 5 1984
[65] William Liu, Handbook of III-V heterojunction bipolar transistors, Wiley, New York.
[66] B. Mazhari, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State. Electron., vol. 34, pp.315-321, 1991.
[67] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
[68] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[69] R. N. Nottenburg, Y.-K. Chen, M. B. Panish, R. A. Hamm, and D. A. Humphrey, “High-current-gain submicrometer InGaAs/InP heterostructure bipolar transistors,” IEEE Electron Device Lett., vol. 9, pp. 524-526, 1988.
[70] D. M. Kim, S. Lee, M. I. Nathan, A. Gopinath, F. Williamson, K. Beyzavi, and A. Ghiasi, “Minority electron mobility and lifetime in the p+ GaAs base of AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 62, pp. 861-863, 1993.
[71] W. S. Hobson, S. J. Pearton, and A. S. Jordan, “.Redistribution of Zn in GaAs-AlGaAs heterojunction bipolar transistor structures,” Appl. Phys. Lett., vol. 56, pp. 1251-1253, 1990.
[72] O. Nakajima, H. Ito, T. Nittono, and K. Nagata, “Current induced degradation of Be-doped AlGaAs/GaAs HBTs and its suppression by Zn diffusion into extrinsic base layer,” Electron Devices Meeting, 1990. Technical Digest., International, 9-12 Dec 1990, pp. 673-676.
[73] B. T. Cunningham, M. A. Haase, M. J. McCollum, J. E. Baker, and G. E. Stillman, “Heavy carbon doping of metalorganic chemical vapor deposition grown GaAs using carbon tetrachloride,” Appl. Phys. Lett., vol. 54, pp. 1905-1907, 1989.
[74] F. Ren, T. R. Fullowan, J. Lothian, P. W. Wisk, C. R. Abernathy, R. F. Kopf, A. B. Emerson, S. W. Downey, and S. J. Pearton, “Stability of carbon and beryllium-doped base GaAs/AlGaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 59, pp. 3613-3615, 1991.
[75] J. I. Song, W. P. Hong, C. J. Palmstrom, J. R. Hayes, K. B. Chough, B. P. Van der Gaag, “Microwave characteristics of a carbon-doped base InP/InGaAs heterojunction bipolar transistor grown by chemical beam epitaxy,” Electronics Letters, vol. 29, pp. 1893-1894, 14 Oct 1993
[76] B. W.-P. Hong, Jong-In Song, C. J. Palmstrom, B. Van der Gaag, Kyung-Bae Chough, and J. R. Hayes, “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors,” Electron Devices, IEEE Transactions on , vol. 41, pp. 19-25, Jan 1994.
[77] Jong-In Song; B.W.-P. Hong, C. J. Palmstrom, B. P. Van Der Gaag, K. B. Chough, “Ultra-high-speed InP/InGaAs heterojunction bipolar transistors,” IEEE Electron Device Letters, vol. 15, pp. 94-96, Mar 1994.
[78] J.-I. Song, B. W.-P. Hong, C. J. Palmstrom, and K. B. Chough, “InP based carbon-doped base HBT technology: its recent advances and circuit applications,” Indium Phosphide and Related Materials, 1994. Conference Proceedings., Sixth International Conference on , 27-31 Mar 1994, pp. 523-526.
[79] Q. J. Hartmann, M. T. Fresina, D. A. Ahmari, S. A. Stockman, J. E. Baker, D. Barlage, H. Hwangbo, A. Yung, M. Feng, and G.E. Stillman, “Effects of annealing on the performance of InP/lnGaAs HBTs grown by LP-MOCVD,” Indium Phosphide and Related Materials, 1997., International Conference on, 11-15 May 1997, pp. 505-508.
[80] Ito, H.; Yamahata, S.; Shigekawa, N.; Kurishima, K.; Matsuoka, Y.; “High-speed carbon-doped-base InP/InGaAs heterojunction bipolar transistors grown by MOCVD,” Electronics Letters, vol. 31, pp. 2128-2130, 23 Nov 1995.
[81] J.-I. Song, W.-P. Hong, C. J. Palmstrom, B. P. van der Gaag, and K. B. Chough, “Millimetre-wave InP/InGaAs heterojunction bipolar transistors with a subpicosecond extrinsic delay time,” Electronics Letters , vol. 30, pp. 456-457, 3 Mar 1994.
[82] W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors, ” IEEE Trans. Electron Devices, vol. 39, pp.2726-2732, 1992.