| 研究生: |
邱雯埼 Chiu, Wen-Chi |
|---|---|
| 論文名稱: |
Dirichlet-Neumann 映射和一些反問題 The Dirichlet-Neumann map and some inverse problems |
| 指導教授: |
陳若淳
Chen, Roger |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 29 |
| 外文關鍵詞: | the Dirichlet-Neumann map |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
In this report, we want to study how the Dirichlet-Neumann map can determine a Riemannian metric. To demonstrate the effectiveness of this detection, we shall quote results from papers by
Lassas-Taylor-Uhlmann and Lee-Uhlmann, respectively. It is interesting to note that, in Lassas-Taylor-Uhlmann's paper, the Green's function is used to provide an essential embedding of the manifold into a Sobolev space which is used to construct the needed isometry, while, in Lee-Uhlmann's paper, a pseudo-differential operator is analyzed to construct the isometry.
[1] Cheeger, J., and Ebin, D., Comparison theorems in
Riemannian geometry, North-Holland, Amsterdam, 1975.
[2] Han, Qing, and Lin, Fanghua, Elliptic partial
differential equations, AMS, New York, 2000.
[3] Homander, L., The analysis of linear partial
differential operators I, Springer-Verlag, New York, 1985.
[4] John, F., Partial differential equations, Springer-Verlag, New
York, 1982.
[5] Kohn, R., and Vogelius, M., Identification of an
unknown conductivity by means of measurements at the boundary,
Proc. SIAM-AMS Symp. on Inverse Problems, New York, 1983, pp.
113-123.
[6] Lassas, M., and Uhlmann G., On determine a Riemannian manifold from the Dirichlet-to-Neumann map
, Ann, Sci., Ecole Norm. Sup. 34(2001), pp. 771-787
[7] Lassas, M., Taylor, M., and Uhlmann, G., The
Dirichlet-to-Neumann map for complete Riemannian manifolds with
boundary, Comm. Anal. Geom., 19(2003), pp. 207-221.
[8] Lee, J., and Uhlmann, G., Determining anisotropic
real-analytic conductivities by boundary measrements, Comm. Pure.
Appl. Math., 42(1989), pp. 1097-1112.
[9] Li, P., and Tam, L.-F., Symmetric Green's functions on
complete manifolds, Amer. J. Math., 109(1987), pp.
1129-1154.
[10] Strauss, Walter A., Partial differential
equations: an introduction, Wiley, New York, 1992.
[11] Sylverster, J., An anisotropic inverse boundary value
problem, Comm. Pure. Appl. Math., 38(1990), pp. 201-232.
[12] Taylor, M., Partial differential equations I, Springer-Verlag, New York,
1996.
[13] Taylor, M., Partial differential equations II, Springer-Verlag, New York,
1996.
[14] Treves F., Introduction to pseudo-differential and
Fourier integral operators, Plenum Press, New York, 1980.
[15] Whitehead, G., Elements of homotopy theory,
Springer-Verlag, New York, 1987.
[16] Wong, M., W., An introduction to pseudo-differential
operators, World Scientific, Singapore, 1991.