簡易檢索 / 詳目顯示

研究生: 邱雯埼
Chiu, Wen-Chi
論文名稱: Dirichlet-Neumann 映射和一些反問題
The Dirichlet-Neumann map and some inverse problems
指導教授: 陳若淳
Chen, Roger
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 29
外文關鍵詞: the Dirichlet-Neumann map
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

    In this report, we want to study how the Dirichlet-Neumann map can determine a Riemannian metric. To demonstrate the effectiveness of this detection, we shall quote results from papers by
    Lassas-Taylor-Uhlmann and Lee-Uhlmann, respectively. It is interesting to note that, in Lassas-Taylor-Uhlmann's paper, the Green's function is used to provide an essential embedding of the manifold into a Sobolev space which is used to construct the needed isometry, while, in Lee-Uhlmann's paper, a pseudo-differential operator is analyzed to construct the isometry.

    0 Introduction 1 1 The Dirichlet-Neumann map 2 2 Determine the Riemannian metric from the Dirichlet-Neumann map 16 3 Determine the Riemannian metric from the Dirichlet-Neumann map measured on an open subset of the boundary 22 References 28

    [1] Cheeger, J., and Ebin, D., Comparison theorems in
    Riemannian geometry, North-Holland, Amsterdam, 1975.
    [2] Han, Qing, and Lin, Fanghua, Elliptic partial
    differential equations, AMS, New York, 2000.
    [3] Homander, L., The analysis of linear partial
    differential operators I, Springer-Verlag, New York, 1985.
    [4] John, F., Partial differential equations, Springer-Verlag, New
    York, 1982.
    [5] Kohn, R., and Vogelius, M., Identification of an
    unknown conductivity by means of measurements at the boundary,
    Proc. SIAM-AMS Symp. on Inverse Problems, New York, 1983, pp.
    113-123.
    [6] Lassas, M., and Uhlmann G., On determine a Riemannian manifold from the Dirichlet-to-Neumann map
    , Ann, Sci., Ecole Norm. Sup. 34(2001), pp. 771-787
    [7] Lassas, M., Taylor, M., and Uhlmann, G., The
    Dirichlet-to-Neumann map for complete Riemannian manifolds with
    boundary, Comm. Anal. Geom., 19(2003), pp. 207-221.
    [8] Lee, J., and Uhlmann, G., Determining anisotropic
    real-analytic conductivities by boundary measrements, Comm. Pure.
    Appl. Math., 42(1989), pp. 1097-1112.
    [9] Li, P., and Tam, L.-F., Symmetric Green's functions on
    complete manifolds, Amer. J. Math., 109(1987), pp.
    1129-1154.
    [10] Strauss, Walter A., Partial differential
    equations: an introduction, Wiley, New York, 1992.
    [11] Sylverster, J., An anisotropic inverse boundary value
    problem, Comm. Pure. Appl. Math., 38(1990), pp. 201-232.
    [12] Taylor, M., Partial differential equations I, Springer-Verlag, New York,
    1996.
    [13] Taylor, M., Partial differential equations II, Springer-Verlag, New York,
    1996.
    [14] Treves F., Introduction to pseudo-differential and
    Fourier integral operators, Plenum Press, New York, 1980.
    [15] Whitehead, G., Elements of homotopy theory,
    Springer-Verlag, New York, 1987.
    [16] Wong, M., W., An introduction to pseudo-differential
    operators, World Scientific, Singapore, 1991.

    下載圖示 校內:立即公開
    校外:2005-07-08公開
    QR CODE