研究生: |
徐佑銓 Hsu, You-Chiuan |
---|---|
論文名稱: |
應用於風力發電系統之永磁發電機設計建模與驗證 Design, Modeling and Validation of Permanent Magnet Generators for Wind Turbines |
指導教授: |
謝旻甫
Hsieh, Min-Fu |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 184 |
中文關鍵詞: | 風力發電 、永磁發電機 、等效磁路 、磁路模型 、後充磁 、低風速 |
外文關鍵詞: | wind turbine, permanent magnet generator, equivalent circuit, magnetic circuit model, post-assembly magnetization, low wind speed |
相關次數: | 點閱:124 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對永磁無刷風力發電機提出一廣泛且系統化之設計流程。該設計流程整合風場、風力發電機葉片、永磁發電機以及後端電力負載等特性,並整合所有元件的特性使各元件能夠同時操作於其預期之操作點,使系統達到整體最佳性能。於風場分析部份,本文針對台灣低風速應用場合之風場特性進行估算,並提出適用該風場特性的電機規格。於發電機設計部分,本文建立一通用且精確之磁路模型,該模型可迅速計算出各種形式與各種槽極比的電機磁路,同時考慮磁路飽和問題,無須使用費時的有限元素模擬軟體。透過以該模型為運算核心之疊代程序,電機的幾何尺寸能夠迅速的被設計出。此外,為解決大型化永磁電機組裝問題,本文提出考量「後充磁」製程之系統化設計方法。後充磁法為一組裝後利用定子線圈通入瞬間大電流進行充磁的方法,該法可解決因轉子磁力強大所造成的組裝困難問題。而充磁過程所需要的電流,亦與電機的幾何尺寸一併考量於設計流程中。
本研究所提出通用磁路模型之準確度以及考量後充磁法的設計可行性,已利用一350瓦的縮小化發電機原型機進行測試與驗證。透過實驗結果與有限元素軟體模擬之雙重比較,本磁路模型與設計方法獲得完整的驗證。本文亦利用此系統化之設計方法,設計出一540仟瓦適用於台灣風場之永磁發電機。該電機能夠在應用於台灣風場時,達到較高的經濟效益。
This thesis proposes a systematic and comprehensive design process for permanent magnet generator (PMG) applying to wind turbines. The design process considers the characteristics of wind conditions, turbine blades, PMG and power electronic components. All components are integrated to achieve the preferred operation point. For the wind conditions analysis, this thesis systematically proposes an approach to estimate the specifications of wind turbine generator for Taiwanese wind conditions. Then, a universal accurate magnetic circuit model (MCM) for electric machine is constructed. The model can rapidly calculate the magnetic circuit in any types of electric machines taking into account the saturation issue without time-consuming finite element analysis (FEA). Based on the magnetic model, the dimensions of the electric machine can be properly designed with iterations. Furthermore, the assembly issue of large permanent magnet generators is considered. The design method proposed in this thesis integrates the post-assembly magnetization (PAM) approach into the process. The PAM is an approach to magnetize the permanent magnets of the rotor by applying an impulse of current into the stator winding after the machine is completely assembled. The required magnetizing current and associated dimensions of the machine are both taken into account in the design process.
A 350W scaled-down prototype is realized and tested to verify the model accuracy and to validate the feasibility of the PAM design approach. According to the experimental results and FEA simulated results, the design process can completely achieve the prescribed specifications. A 540kW wind turbine generator for low wind speed conditions is also designed using the systematic design process. The wind turbine can thus be economically operated in the Taiwanese wind conditions.
Chapter1
[1.1.1] United Nations Framework Convention on Climate Change official website,
http://unfccc.int/2860.php
[1.1.2] H. Li and Z. Chen, “Design optimization and evaluation of different wind generator systems”, International conference on Electrical Machines and Systems (ICEMS), pp. 2396-2401, 2008.
[1.1.3] http://www.energy.siemens.com/hq/en/power-generation/renewables/wind-power/wind-turbines/
[1.1.4] Moretti P. and Divone L., Moderne Windkraftanlagen, Spektrum der Wissenschaft, August 1986.
[1.1.5] http://www.windmills.net/
[1.1.6] http://en.wikipedia.org/wiki/Wikipedia:Picture_peer_review/Dutch_Windmill
[1.1.7] http://en.wikipedia.org/wiki/File:Darrieus-windmill.jpg
[1.1.8] http://upload.wikimedia.org/wikipedia/commons/b/b5/Mod-2_Wind_Turbine_Cluster3.jpg
[1.1.9] http://www.reuk.co.uk/Buy-a-VAWT-Vertical-Wind-Turbine.htm
[1.1.10] Siegfried H., Grid integration of wind energy conversion systems, WILEY, 2003.
[1.1.11] Betz A., Wind-Energie und ihre Ausnutzung durch Windmühlen, Vandenhoeck und Ruprecht, Göttingen, 1926.
[1.1.12] http://www.enercon.de/en/_home.htm
[1.1.13] Tomohiko N., Shigeo M, Masayuki S. and Yoji T., “Optimum control of IPMSG for wind generation system,” Proc. of IEEE Power Conversion Conference, vol. 3, pp. 1435-1440, 2002.
[1.1.14] Siemens Brothers & Co. Ltd. and Francis Lydall. Improvements in
polyphase induction motors. British Patent no.: 16839, July 1902.
[1.1.15] A. R. W. Broadway. Cageless induction machine. Proc. of IEE, 118(11):1593–1600, November 1971.
Chapter2
[2.2.1]
W.E. Knowles Middleton and Athelstan F. Spilhaus, Meteorological Instruments, Third Edition revised, University of Toronto Press, Toronto, 1953
[2.2.2] G. L. Johnson, Wind Energy Systems. Englewood Cliffs, NJ: Prentice-Hall, 1985.
[2.2.3] BWEA, Department of Trade and Industry wind speed database, UK, 2009.
[2.2.4] Department of Atmospheric Sciences and Graduate Institute of Atmospheric Physics, National Central University, Official website. http://www.atm.ncu.edu.tw/93/wind/main.asp
[2.2.5] RenewableUK website (formerly named BWEA). http://www.bwea.com/
[2.2.6] Wissenschaftliches Meβ- und Evaluierungsprogrammzum Breitentest, ‘250 MW - Wind’, Institut für Solar Energieversorgungstechnik (ISET), Jahresauswertungen, Eigendruck, Kassel, 1990-2001.
[2.2.7] Industrial Technology Research Institute, http://wind.erl.itri.org.tw/demonstration/index.htm
[2.2.8] http://suzlon.com/products/l2.aspx?l1=2&l2=9
[2.2.9] Man D. T., Sullivan J. P. and Wasynczuk O., “Dynamic behavior of a class of wind turbine generators during random wind fluctuations,” IEEE Transactions on Power Apparatus and Systems, PAS-100(6), June 1981.
[2.2.10] Anderson P. M. and Bose A., “Stability simulation of wind turbine system,“ IEEE Transactions on Power Apparatus and Systems, vol. PAS-102, issue 12, pp. 3791-3795, 1983.
[2.2.11] Molly J.P., Windenergie. Therie, Anwendung, messung, 2/E, Teubner, Stuttgart, 1990.
Chapter3
[3.2.1] Roters H. C., Electromagnetic Devices, John Wiley & Sons, Inc., NewYork, 1941.
[3.2.2] Cherry E C., “The duality between interlinked electric and magnetic circuits,” Proc. of Phys. Soci., [B], 62, pp. 101, 1949.
[3.2.3] Laithwaite E. R., “Magnetic equivalent circuits for electrical machines,” Proc. of IEE, vol. 114(11), pp. 1805-1809, November 1967.
[3.2.4] Carpenter, C.J., “Magnetic equivalent circuits,” Proc. of IEE, pp. 1503-1511, October 1968.
[3.2.5] P. Campbell, “The magnetic circuit of an axial field D.C. electrical machine,” IEEE Transactions on Magnetics, vol. Mag-11, no. 5, pp. 1541-1543, September 1975.
[3.2.6] Nady B., “Two-dimensional field analysis of cylindrical machines with permanent magnet excitation,” IEEE Transactions on Industry Applications, vol. IA-20, no. 5, pp. 1267-1276, September/October 1984.
[3.2.7] Vlado O., ”A method for evaluation of transient and steady state performance in saturated squirrel cage induction machines,” IEEE Transactions on Energy Conversion, vol. EC-1, no. 3, pp. 190-196, September 1986.
[3.2.8] Vlado O., “Computation of saturated permanent-magnet motor performance by means of magnetic circuit,” IEEE Transactions on Industry application, vol. 1A-23, no. 5, pp. 836-841, September/October 1987.
[3.2.9] Vlado O., “A Novel Method for Evaluation of Transient States in Saturated Electric Machines,” IEEE Transactions on Industry Applications, vol. 25, no. 1, pp. 96- 100, January/February 1989.
[3.2.10] Gordon R. S., “An equivalent circuit approach to analysis of synchronous machines with saliency and saturation,” IEEE Transactions on Energy Conversion, vol. 5, no. 3, pp. 538-545, September 1990.
[3.2.11] J. D. Law., T. J. Busch and T. A. Lipo., “Magnetic circuit modeling of the field regulated reluctance machine Part I: Model development,” IEEE Transactions on Energy Conversion, vol. 11, no. 1, pp. 49-55, March 1996.
[3.2.12] T. J. Busch., J. D. Law. and T. A. Lipo., “Magnetic circuit modeling of the field regulated reluctance machine Part II: saturation modeling and results,” IEEE Transactions on Energy Conversion, vol. 11, no. 1, pp. 56-61, March 1996.
[3.2.13] Hamid A. T., Mohammed S.A. and Alexander G. P., ”A method for dynamic simulation of air-gap eccentricity in induction machines,” IEEE Transaction on Industry Applications, vol. 32, no. 4, pp. 910-918, July/August 1996.
[3.2.14] T. J. E. Miller and J. R. Hendershot, Design of Brushless Permanent-Magnet motors, Magna Physics Publishing and Clarendon Press Oxford, 1994.
[3.2.15] D. C. Hanselman, Brushless Permanent Magnet Motor Design 2/E, The Writers’ Collective, 2003.
[3.2.16] M. Cheng, K. T. Chau, C. C. Chan, E. Zhou and X. Huang, “Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors”, IEEE Transactions on magnetics, vol. 36, no. 1, pp.339-348, January 2000.
[3.2.17] Y. Kano, K. Tonogi, T. Kosaka and N. Matsui, “Torque-maximizing design of double-stator axial-flux, PM machines using simple non-linear magnetic analysis”, IEEE Industry Applications Conference, pp.875-881, October 2007.
[3.2.18] Y. Chen, Z. Q. Zhu and David H., ”Three-dimensional lumped-parameter magnetic circuit analysis of single-phase flux-switching permanent-magnet motor, ” IEEE Transactions on Industry Applications, vol. 44, no. 6, pp. 1701-1710, November/December 2008.
[3.3.1] China Steel Corporation official website, http://www.csc.com.tw/indexe.html
[3.3.2] Carter F.W., “The magnetic field of the dynamic-electric machine,” Journal IEE, vol.64, pp.1115, 1926.
[3.4.1] P. Campbell, Permanent magnet materials and their application, Cambridge University Press, 1994.
[3.5.1] J. F. Gieras and M. Wing, Permanent magnet motor technology second edition, revised and expanded, Marcel Dekker, Inc., 2002.
[3.5.2] Litovski V. and Zwolinski M., VLSI Circuit Simulation and Optimization, Kluwer Academic Publishers, 1997.
[3.5.3] You-Chiuan Hsu, Min-Fu Hsieh and McMahon, R.A., “A general design method for electric machines using magnetic circuit model considering the flux saturation problem“, Proc. on IEEE Power Electronics and Driver Systems Conference (PEDS), pp. 625-630, 2009.
[3.5.4] Dahlquist, Germund, Bjorck, Ake, Anderson and Ned, Numerical methods, Prentice-Hall Inc., 1974.
[3.5.5] ____, “Feasibility study of a converter optimized induction motor, ” Palo Alto, CA, Electric Power Research Institute, EPRI Final Rep., pp. 2624-02, January 1989.
Chapter4
[4.1.1] C. K. Lee and B. I. Kwon, “Design of post-assembly magnetization system of line start permanent-magnet motors using FEM,” IEEE Transactions on Magnetics, vol. 41, no. 5, pp. 1928-1931, 2005.
[4.1.2] G. W. Jewell and D. Howe, “Computer-aided design of magnetizing fixtures for the post-assembly magnetization of rare-earth permanent magnet brushless DC motors,” IEEE Transactions on Magnetics, vol.28, no.5, pp. 3036-3038, 1992.
[4.1.3] A. B. Proca, A. Keyhani, A. El-Antably, W. Lu and M. Dai, “Analytical model for permanent magnet motors with surface mounted,” IEEE Transactions on Energy Conversion, vol. 18, no.3, pp. 386-391, 2003.
[4.1.4] C. Gerada and K. J. Bradley, “Integrated PM machine design for an aircraft EMA,” IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3300–3306, 2008.
[4.1.5] M. Dai, A. Keyhani, T. Sebastian, “Torque ripple analysis of a PM brushless DC motor using finite element method,” IEEE Transactions on Energy Conversion, vol. 19, no.1, pp. 40-45, 2004.
[4.1.6] L. Parsa and L. Hao, “Interior permanent magnet motors with reduced torque pulsation,” IEEE Transactions on Industrial Electronics, vol. 55, no. 2, pp. 602-609, 2008.
[4.1.7] T. S. Low, S. Chen and X. Gao, “Robust torque optimization for BLDC spindle motors,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 656-663, 2001.
[4.1.8] Z. Sun, J. Wang, D. Howe and G. Jewell, “Analytical prediction of the short-circuit current in fault-tolerant permanent-magnet machines,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4210-4217, 2008.
[4.1.9] W. F. Praeg, “A pulsed power supply for injection bump magnets,” IEEE Transactions on Industrial Electronics and Control Instrumentation, vol. 26, no. 1, pp. 40-46, 1979.
[4.1.10] Y. Okada, H. Inoue, H. Fusayasu, and H. Nishida, “Analysis for permanent magnet motor taking account of magnetizing process,” IEEE Transactions on Magnetics, vol.33, no.2, pp. 2113-2116, 1997.
[4.1.11] Y. Zhilichev, P. Campbell and D. Miller, “In Situ magnetization of isotropic permanent magnets,” IEEE Transactions on Magnetics, vol. 38, no.5, pp. 2988-2990, 1991.
[4.1.12] P. Zheng, Y. Liu, Y. Wang and S. Cheng, “Magnetization analysis of the brushless DC motor used for hybrid electric vehicle,” IEEE Transactions on Magnetics, vol. 41, no. 1, pp. 522-524, 2005.
[4.1.13] L. Chang, T. R. Eastham and G. E. Dawson, “In Situ magnetization of NdFeB magnets for permanent magnet machines,” IEEE Transactions on Magnetics, vol. 27, no.5, pp. 4355-4359, 1991.
[4.1.14] S.K Pal, “Comparative study of the design and manufacturing processes of electrical motors with low and high energy permanent magnets,” IEE EMDC Conference, pp. 339-346, 8-10 Sept, 1993.
[4.2.1] J. M. D. Coey, Rare-Earth Iron Permanent Magnets, Clarendon Press Oxford, 1996.
[4.2.2] Campbell P. and Al-Murshid S. A., “A model of anisotropic Alnico magnets for field computation”, IEEE Transactions on Magnetics, vol. 18, pp. 898-904, 1982.
[4.2.3] G. W. Jewell, D. Howe and C.D. Riley, “The design fo radial-field multipole impulse magnetizing fixtures for isotropic NdFeB magnets,” IEEE Transactions on Magnetics, vol. 33, no. 1, January 1997.
[4.2.4] S. R. Trout, “Use of Helmholtz coils for magnetic measurements,” IEEE Transactions on Magnetics, vol. 24, no. 4, pp. 2108-2111, July, 1988.
[4.2.5] Bleaney B. I. and Bleaney B., “Electricity and Magnetism 2/e”, Clarendon Press Oxford, 1965.
[4.3.1] M.F. Hsieh, Y.C. Hsu and D.G Dorrell, “Design of Large Power Surface-mounted Permanent-magnet Motors Using Post-assembly Magnetization Process”, IEEE Transactions on Industrial Electronics, (Digital Object Identifier: 10.1109/TIE.2009.2038952, in press), 2010.
[4.3.2] D. G. Dorrell, M. F. Hsieh, and Y. C. Hsu, “Post assembly magnetization patterns in rare earth permanent magnet motors,” IEEE Transactions on Magnetics, vol. 43, no.6, pp. 2489-2491, 2007.
[4.3.3] M. F. Hsieh and Y. C. Hsu, “Characteristics regulation for manufacture of permanent-magnet motors using post-assembly magnetization,” IEEE Transactions on Magnetics, vol. 43, no.6, pp. 2510-2512, 2007.
[4.3.4] M. F. Hsieh, Y. C. Hsu, D.G. Dorrell and K. H. Hu, “Investigation on End Winding Inductance in Stators of Permanent-Magnet Motors”, IEEE Transactions on Magnetics, vol. 43, no. 6, pp.2513-2515, 2007.