| 研究生: |
董憲澤 Tung, Hsien-Tse |
|---|---|
| 論文名稱: |
熱輔助光還原金屬奈米線 Thermally Assisted Photoreduction of Metallic Nanowires |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 金屬奈米線 、光觸媒 、黑體輻射 |
| 外文關鍵詞: | metallic nanowires, photocatalyst, blackbody-radiation |
| 相關次數: | 點閱:89 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用具有光觸媒性質的二氧化鈦(TiO2),成功還原生長出直立式金屬奈米線,同時避免使用界面活性劑(surfactants)、模板(templates)、或是晶種(seeds)之合成方式,大幅增加金屬奈米線的導電性並且簡化製程。
本論文研究所使用的熱處理分為2階段式,第1階段為TiO2基材退火,此階段不但提供熱能使薄膜結晶化,並利用黑體輻射原理提供微量之UV光部分激發TiO2,產生光電子與金屬水溶液中金屬離子反應提供奈米線之成核點。第2階段為後熱處理(亦稱熱輔助光還原熱處理),根據半導體之熱電原理提供後續的熱電子與金屬離子反應形成原子,依序堆疊在成核點上以生長成一維金屬奈米結構。本論文所建立之奈米生長模型,與文獻報導中並不相同,因此,在此把生長機制稱為“熱輔助光還原法”(thermally assisted photoreduction,TAP)。
此外,利用改變TiO2基材的結晶性、表面粗糙度、光觸媒性質、與從優選向等研究,探討基材與金屬奈米線生長的關連性。原子力顯微鏡(AFM)與X光繞射儀(XRD)顯示,當結晶性與表面粗糙度提升時,金屬奈米線生長的數量也會隨之增加,此意味著基材的結晶性與粗糙度會影響表面電子形成金屬奈米線成核點之難易度。TiO2基材之光觸媒性質指出,當TiO2表面具有超親水性對於成長金屬奈米線是不利的;反之,適當數量的電子散佈在TiO2表面使表面呈現疏水性才可以有效地還原出大量的奈米線;利用光激螢光(PL)與時間解析螢光光譜儀(TRPL)證實,(101)面具有較複雜的表面結構與較長的電子衰退時間,此暗示(101)面的生成有助於奈米線的成核。事實上,在高解析穿透式顯微鏡(HRTEM)下觀察到(101)面確實為奈米線的成核點。
最後,利用改變熱輔助光還原熱處理參數之條件,以調整此研究合成出之金屬線。實驗發現成長溫度越高時,會產生高數量與高長寬比的金屬奈米線;而成長時間越長,則越能將奈米線的尺寸均勻化。利用奈米操縱器(nano-manipulator)證實,本研究所製作出的金屬奈米線具有極佳的導電性,對於未來應用在奈米電子封裝材料具有極大的潛力。
Through the photocatalysis of titanium dioxide (TiO2), a novel method is developed in this study for fabricating metallic nanowires (NWs) without using seeds, surfactants or templates. It is verified that this method can simplify the manufacturing procedures and the nanowires thus produced exhibit excellent electrical conductivity. The heat treatment of this process can be divided into two steps: the first step is the annealing treatment for the TiO2 substrate, which can provide the heat energy for the crystallization of anatase TiO2, and also generate a small amount of UV sources to excite TiO2 by blackbody radiation. This activates electrons and holes on the surface of TiO2 films and enables the reduction of metallic ions from the solution, and subsequently forms the nucleation sites of nanowires. The second step is the post heat treatment for the growth of nanowires. In the post heat treatment, thermal-electrons in TiO2, an n-type semiconductor, can further reduce the metallic ions and thus the metal atoms accumulate and stack on the pre-formed nucleation sites along a certain preferred orientation to form one dimensional nanostructure. This thesis builds a brand new model for the synthesis of metallic nanowires, of which the nucleation and growth mechanisms are much different from the others in literatures. Accordingly, this unique method is named “Thermally Assisted Photoreduction, TAP” process.
Several experimental parameters are varied to clarify the relationship between the substrate and the yield of metallic nanowires, such as the degree of crystallization, surface roughness, photocatalytic ability and surface orientation. Atomic Force Microscope (AFM) and X-ray diffraction (XRD) results suggest that a better crystallinity, along with a rugged surface of anatase TiO2, gives rise to a higher yield of the nanowires. This means that the crystallinity and surface morphology of the anatase TiO2 substrate significantly influence the nucleation of nanowires. The super-hydrophilicity of TiO2, which means full excitation of TiO2, is harmful for the formation of nanowires. Conversely, a suitable number of photo-electrons on the surface of TiO2 under insufficiently excited conditions are required for forming nanowires. According to the results of Photoluminescence (PL) and Time Resolved Photoluminescence (TRPL), (101) oriented films which is capable of obtaining large quantity of nanowires exhibit a more complex surface structure, longer life time for photo-exited electrons and consequently a greater photocatalytic activity. The finding can be supported by high resolution transmission electron microscopy (HRTEM).
Furthermore, through the adjustment of the conditions of post heat treatment (time and temperature), the yield and aspect ratio, as well as the uniformity of the metallic NWs can be controlled. The electrical behavior investigated using a nanomanipulation device indicates that the metallic nanowires by the TAP process possess excellent electrical conductivity, which is believed to have a great potential for the application in nano-electronics packaging.
[1] Y. Wu and P. Yang, Germanium Nanowire Growth via Simple Vapor Transport, Chem. Mater., 2000, 12, 605
[2] X. Fang, Y. Bando, U. K. Gautam, C. Ye and D. Golberg, Inorganic semiconductor nanostructures and their field-emission applications, J. Mater. Chem., 2008, 18, 509
[3] Y. Huang, X. Duan and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, 2001, 291, 630
[4] M. Law, D. J. Sibuly, J. C. Johnson, J. Goldberger, R. J. Saykally and P. Yang, Nanoribbon Waveguides for Subwavelength Photonics Integration, Science , 2004, 305, 1269
[5] S. J. Hurst, E. K. Payne, L. Qin, C. A. Mirkin, Multisegmented One-Dimensional Nanorods Prepared by Hard-Template Synthetic Methods, Angewandte Chemie International Edition, 2006, 45, 2672
[6] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller, and J. A. Shelnutt, Synthesis of Platinum Nanowire Networks Using a Soft Template, Nano Lett., 2007, 7, 3650
[7] T. K. Chen, W. T. Chen, M. C. Yang, and M. S. Wong, Thermal-induced formation of silver nanowires on titanium dioxide thin films, J. Vac. Sci. Technol. B, 2005, 23, 2261
[8] S. K. Kim, W. D. Kim, K. M. Kim, C. S. Hwang, and J. Jeong, High dielectric constant TiO2 thin films on a Ru electrode grown at 250oC by atomic-layer deposition, Applied Physics Letters, 85, 4112, 2004
[9] M. Zhanga, G. Lina, C. Dong, and L. Wen, Amorphous TiO2 films with high refractive index deposited by pulsed bias arc ion plating, Surface and Coatings Technology, 201, 7252, 2007
[10] A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 1972
[11] H. Ohsaki, N. Kanai, Y. Fukunaga, M. Suzuki, Y. Shibayama, T. Watanabe, K. Hashimoto, Characterization of sputtered triple layer photoactive coating with a glass-like appearance, Thin Solid Films, 516, 4558, 2008
[12] C. Guillard, D. Debayle, A. Gagnaire, H. Jaffrezic, J. M. Herrmann, Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and sol–gel methods, Materials Research Bulletin, 39, 1445, 2004
[13] B. Kim, D. Byun, J. K. Lee, and D. Park, Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition, Jpn. J. Appl. Phys., 41, 222, 2002
[14] A. I. Kontos, A. G. Kontos, D. S. Tsoukleris, G. D. Vlachos, and P. Falaras, Superhydrophilicity and photocatalytic property of nanocrystalline Titania sol-gel films, Thin Solid Films, 515, 7370, 2007
[15] S. Luo, F. Wang, Z. Shi1 and F. Xin, Preparation of highly active photocatalyst anatase TiO2 by mixed template method, Journal of Sol-Gel Science and Technology, 2009, 52, 1
[16] M. Law, L. E. Green, J. C. Johnson, R. Saykally and P. Yang, Nanowire dye-sensitized solar cells, Nature Materials, 2005, 4, 455
[17] L. Z. Songa, S. Z. Songb and J. Zhao, Preparation and corrosion resistance of NiP/TiO2 composite film on carbon steel in sulfuric acid solution, Acta Metallurgica Sinica, 2006, 19, 117
[18] U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48, 53, 2003
[19] P. W. Tasker, The stability of ionic crystal surfaces, J. Phys. C, 12, 4977, 1979
[20] G. Charlton, P. B. Howes, C. L. Nicklin, P. Steadman, J. S. G. Taylor, C. A. Muryn, S. P. Harte, J. Mercer, R. McGrath, D. Norman, T. S. Turner, and G. Thornton, Relaxation of TiO2(110)-(1×1) Using Surface X-Ray Diffraction, Phys. Rev. Lett., 78, 495, 1997
[21] B. Hird, R. A. Armstrong, Surface relaxation of rutile TiO2 (110)-(1×1) from ion shadowing/blocking measurements, Surf. Sci., 420, L131, 1999
[22] B. Hird, R. A. Armstrong, Ion scattering measurements of rutile TiO2(110)-(1×1) surface relaxation, Surf. Sci., 385, L1023, 1997
[23] E. Asari, T. Suzuki, R. Souda, TiO2(110)-p(1×1) surface structure analyzed by impact-collision ion-scattering spectroscopy, Phys. Rev. B, 61, 5679, 2000
[24] H. Ito, N. Takada, and K. Sasaki, Synthesis of anatase-type TiO2 films by reactive laser ablation of a metallic Ti target in ambient O2 gas, Appl. Phys. A, 79, 1327, 2004
[25] Y. Masuda and K. Kato, Anatase TiO2 films crystallized on SnO2: F substrates in an aqueous solution, Thin Solid Films, 516, 2547, 2008
[26] A. L. Linsebigler, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev., 95, 735, 1995
[27] Y. Nosaka and M. A. Fox, Kinetics for electron transfer from laser-pulse irradiated colloidal semiconductors to adsorbed methylviologen: dependence of the quantum yield on incident pulse width, J. Phys. Chem., 92, 1893, 1988
[28] R. Abe, M. Higashi, Z. Zou, K. Sayama, Y. Abe, and H. Arakawa, Photocatalytic water splitting into H2 and O2 over R3TaO7 and R3NbO7 (R=Y, Yb, Gd, La): effect of crystal structure on photocatalytic activity, J. Phys. Chem. B, 108, 811, 2004
[29] P. Zeman and S. Takabayashi, Self-cleaning and antifogging effects of TiO2 films prepared by radio frequency magnetron sputtering, J. Vac. Sci. Technol. A, 20, 388, 2002
[30] J. Premkumar, Development of super-hydrophilicity on nitrogen-doped TiO2 thin film surface by photoelectrochemical method under visible light, Chem. Mater., 16 , 3980, 2004
[31] R. Wang, K. Hashimoto and A. Fujishima, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 10, 135, 1998
[32] N. Sakai, A. Fujishima, T. Watanabe and K. Hashimoto, Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization, J. Phys. Chem. B, 105, 3023, 2001
[33] W. Y. Gan, S. W. Lam, K. Chiang, R. Amal, H. J. Zhao and M. P. Brungs, Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours, J. Mater. Chem., 17, 952, 2007
[34] W. S. Liao, T. Yang, E. T. Castellana, S. Kataoka, and P. S. Cremer, A rapid prototyping approach to Ag nanoparticle fabrication in the 10-100 nm Range, Adv. Mater., 18, 2240, 2006
[35] V. Iliev, D. Tomova, L. Bilyarska, G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid, Journal of Molecular Catalysis A: Chemical, 263, 32, 2007
[36] L. Lu, S. Hu, H. I. Lee, C. Woll and R. A. Fischer, Photoinduced growth of Cu nanoparticles on ZnO from CuCl2 in methanol, Journal of Nanoparticle Research, 9, 491, 2007
[37] M. Haruta, Size- and support-dependency in the catalysis of gold, Catalysis Today, 36, 153, 1997
[38] C. M. Wang, A. Heller, H. Gerischer, Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds, Journal of the American Chemical Society, 114, 5230, 1992
[39] T. K. Chen, W. T. Chen, M. C. Yang, and M. S. Wong, Thermal-induced formation of silver nanowires on titanium dioxide thin films, J. Vac. Sci. Technol. B, 23, 2261, 2005
[40] D. S. Humphrey, G. Cabailh, C. L. Pang, C. A. Muryn, S. A. Cavill, H. Marchetto, A. Potenza, S. S. Dhesi, and G. Thornton, Self-assembled metallic nanowires on a dielectric support: Pd on rutile TiO2(110), Nano Lett., 9, 155, 2009
[41] J. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res., 32, 435, 1999
[42] R. H. Baughman, A. A. Zakhidov, W. A. De Heer, Carbon nanotubes-the route toward applications, Science, 297, 787, 2002
[43] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 2001
[44] G. R. Patzke, F. Krumeich, R. Nesper, Oxidic nanotubes and nanorods-anisotropic modules for a future nanotechnology, Angew. Chem. Int. Ed., 41, 2447, 2002
[45] V. V. Pokropivnyi, Non-carbon nanotubes (review). part 2. types and structure, Powder Metallurgy and Metal Cermics, 40, 582, 2001
[46] P. M. Aiavan, S. Iijima, Capillarity-induced filling of carbon nanotubes, Nature, 361, 333, 1993
[47] C. Guerretpiecourt, Y. Lebouar, A. Loiseau, H. Pascard, Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes, Nature, 372, 761, 1994
[48] G. Schmid, Materials in nanoporous alumina, J. Mater. Chem., 12, 1231, 2002
[49] D. J. Sellmyer, M. Zheng, R. Skomski, Magnetism of Fe, Co and Ni nanowires in self-assembled arrays, J. Phys.: Condens. Matter, 13, R433, 2001
[50] T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang, Electrochemical synthesis of copper nanowires, J. Phys.: Condens. Matter, 14, 355, 2002
[51] Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiraga, O. Terasaki, C. H. Ko, H. J. Shin, R. Ryoo, TEM Studies of platinum nanowires fabricated in mesoporous silica MCM-41, Angew. Chem. Int. Ed., 39, 3107, 2000
[52] C. M. Yang, H. S. Sheu, K. J. Chao, Templated synthesis and structural study of densely packed metal nanostructures in MCM-41 and MCM-48, Adv. Funct. Mater., 12, 143, 2002
[53] Y. J. Han, J. M. Kim, G. D. Stucky, Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15, Chem. Mater., 12, 2068, 2000
[54] M. J. Edmodson, W. Zhou, S. A. I. P. Jones, I. Gameson, P. A. Anderson, and P. P. Edwards, Electron-beam induced growth of bare silver nanowires from zeolite crystallites, Adv. Mater., 13, 1608, 2001
[55] M. Motoyama, Y. Fukunaka, T. Sakka, Y. H. Ogata, S. Kikuchi, Electrochemical processing of Cu and Ni nanowire arrays, J. Electroanal. Chem., 584, 84, 2005
[56] J. Jorritsma, M. A. M. Gijs, J. M. Kerkhof, J. G. H. Stienen, General technique for fabricating large arrays of nanowires, Nanotechnology, 7, 263, 1996
[57] A. Sugawara, T. Coyle, G. G. Hembree, M. R. Scheinfein, Self-organized Fe nanowire arrays prepared by shadow deposition on NaCl(110) templates, Appl. Phys. Lett., 70, 1043, 1997
[58] R. M. Penner, Mesoscopic metal particles and wires by electrodeposition, J. Phys. Chem. B, 106, 3339, 2002
[59] E. Braun, Y. Eichen, U. Sivan, G. B. Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire, Nature, 391, 775, 1998
[60] J. Richter, R. Seidel, R. Kirsch, M. Mertig, W. Pompe, J. Plaschke, H. K. Schackert, Nanoscale palladium metallization of DNA, Adv. Mater., 12, 507, 2000
[61] S. Minko, A. Kinko, G. Gorodyska, M. Stamm, Mineralization of single flexible polyelectrolyte molecules, J. Am. Chem. Soc., 124, 10192, 2002
[62] Y. Sun and Y. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol Process, Adv. Mater., 14, 833, 2002
[63] Y. Sun, B. Gates, B. Mayers, and Y. Xia, Crystalline silver nanowires by soft solution processing, Nano Lett., 2, 165, 2002
[64] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, and Y. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chem. Mater., 14, 4736, 2002
[65] Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence, Nano Lett., 3, 955, 2003
[66] N. R. Jana, L. Gearheart, C. J. Murphy, Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio, Chem. Commun., 617, 2001
[67] J. Q. Hu, Q. Chen, Z. X. Xie, G. B. Han, R. H. Wang, B. Ren, Y. Zhang, Z. L. Yang, Z. Q. Tian, A simple and effective route for the synthesis of crystalline silver nanorods and nanowires, Adv. Funct. Mater., 14, 183, 2004
[68] Z. Liu, Y. Bando, A novel method for preparing copper nanorods and nanowires, Adv. Mater., 15, 303, 2004
[69] C. Cheng, R. K. Gonela, Q. Gu, and D. T. Haynie, Self-assembly of metallic nanowires from aqueous solution, Nano Lett., 5, 175, 2005
[70] J. C. Weaver and Y. A. Chizmadzhev, Theory of electroporation: a review, Bioelectrochemistry and Bioenergetics, 41, 135, 1996.
[71] S. Link, Z. L. Wang, and M. A. El-Sayed, Formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B, 103, 3529, 1999.
[72] P. Mulvaney, Surface plasmon spectroscopy of nanosized metal particles, Langmuir, 12, 788, 1996.
[73] M. Giersig and P. Mulvaney, Preparation of ordered colloid monolayers by electrophoretic deposition, Langmuir, 9, 3408, 1993.
[74] M. Giersig and P. Mulvaney, Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition, J. Phys. Chem., 97, 6334, 1993
[75] Y. Sun, Y. Yin, B. T. Mayers, Thurston Herricks, and Younan Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chem. Mater., 14, 4736, 2002
[76] Z. Wang, A simple hydrothermal route to large-scale synthesis of uniform silver nanowires, Chem. Eur. J., 11, 160, 2005
[77] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668, 2003
[78] S.Lefrant, Raman and SERS studies of carbon nanotube systems, Current Applied Physics, 2, 479, 2002
[79] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. Feld, Surface-enhanced Raman scattering and biophysics, J. Phy Condens. Matter., 14, R597, 2002
[80] M. Fleischman, P. J. Hendra, A. J. McQuillan, Chemical shift tensor in fluorobenzene compounds, Chem. Phys., 26, 123, 1974
[81] A. Bachackashvilli, S. Efrima, B. Katz, Z. Priel, Is there surface enhancement of raman scattering by molecules at resonance? Chem. Phys. Lett., 94, 571, 1983
[82] K. Kneipp, High-sensitive SERS on colloidal silver particles in squeous dolution, Exp. Tech. Phys., 36, 161, 1998
[83] M. G. Albercht, J. A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 99, 5215, 1977
[84] D. L. Jeanmaire, R. P. V. Duyne, Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem., 84, 1, 1977
[85] W. Wu, J. B. DiMaria, and H. G. Yoo, In situ electrochemical fabrication of natural contacts on single nanowires, Appl. Phys. Lett., 84, 966, 2004
[86] Y. H. Lee, Y. T. Jang, and B. K. Ju, In situ nanointerconnection for nanoelectronics via direct auto-catalytic lateral growth, Appl. Phys. Lett., 86, 173103, 2005
[87] B. Wu, J. J. Boland, Synthesis and dispersion of isolated high aspect ratio gold nanowires, Journal of Colloid and Interface Science, 303, 611, 2006
[88] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater., 15, 353, 2003
[89] W. B. Zhao, J. J. Zhu, H. Y. Chen, Photochemical synthesis of Au and Ag nanowires on a porous aluminum oxide template, Journal of Crystal Growth, 258, 176, 2003
[90] M. Y. Yen, C. W. Chiu, C. H. Hsia, F. R. Chen, J. J. Kai, C. Y. Lee, H. T. Chiu, Synthesis of cable-like copper nanowire, AdV. Mater., 15, 32, 2003
[91] X. Cao, F. Yu, L. Li, Z. Yao, Y. Xie, Copper nanorod junctions templated by a novel polymer–surfactant aggregate, J. Cryst. Growth, 254, 164, 2003
[92] A. P. Suryavanshi, M. F. Yu, Probe-based electrochemical fabrication of freestanding Cu nanowire array, Appl. Phys. Lett., 88, 083103, 2006
[93] X. Zhang, D. Zhang, X. Ni, H. Zheng, Electrochemical processing of Cu and Ni nanowire arrays, Chem. Lett., 35, 10, 2006
[94] L. Pei, K.i Mori, M. Adachi, Direct Chemical synthesis of gold nanowires with 2-D network structure and relationship between the presence of gold ions and shape stability of gold nanowires, Chemistry Letters, 33, 324, 2004
[95] F. Kim, J. H. Song, P. Yang, Photochemical synthesis of gold nanorods, J. Am. Chem. Soc., 124, 14316, 2002
[96] P. A. Smith, C. D. Nordquist, T. N. Jackson, T. S. Mayer, Electric-field assisted assembly and alignment of metallic nanowires, Appl. Phys. Lett., 77, 1399, 2000
[97] E. P. Lee, Z. Peng, D. M. Cate, H. Yang, C. T. Campbell, Y. Xia, Growing Pt nanowires as a densely packed array on metal gauze, J. Am. Chem. Soc., 129, 10634, 2007
[98] S. Sun, D. Yang, G. Zhang, E. Sacher, J. P. Dodelet, Synthesis and characterization of platinum nanowire–carbon nanotube heterostructures, Chem. Mater., 19, 6376, 2007
[99] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, W. A. Steen, J. E. Miller, J. A. Shelnutt, Synthesis of platinum nanowire Networks using a soft template, Nano Lett., 7, 3650, 2007
[100] 顏正偉,熱輔助光還原金屬奈米線於二氧化鈦薄膜表面之研究,國立成功大學材料科學及工程學學系碩士論文,民國97年。
[101] 黃瓊儀,利用熱還原法在二氧化鈦薄膜上成長銀奈米線之研究,國立東華大學材料科學與工程學研究所碩士論文,民國95年。
[102] B. E. Warren, X-ray diffraction, 1969
[103] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,181,100,民國91年。
[104] D. Rickerby and A. Matthews, Advanced surface coatings: a handbook of surface engineering, Blackie & Son Limited, 1991
[105] J. M. Shieh, Y. F. Lai, Y. C. Lin, J. Y. Fang, photoluminescence: principles, structure, and applications, 奈米通訊, 12, 28, 2003
[106] Goldberg, Luminescence of inorganic solids, New York: Academic Press, 1966
[107] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Communications, 103, 459, 1997
[108] Z. K. Tang, G. K. L. Wong, P. Zu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett., 72, 3270, 1998
[109] R. E. Sherriff, D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, T. C. Collins, G. Cantwell, and W. C. Harsch, Photoluminescence measurements from the two polar faces of ZnO, Journal of Applied Physics, 88, 3454, 2000
[110] W. F. Zhang, M. S. Zhang, Z. Yin, Q. Chen, Photoluminescence in anatase titanium dioxide nanocrystals, Applied Physics B: Lasers and Optics, 70, 261, 2000
[111] R. Janes, M. Edge, J. Rigby, D. Mourelatou, N.S. Allen, The effect of sample treatment and composition on the photoluminescence of anatase pigments, Dyes and Pigments, 48, 29, 2001
[112] M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, M. Umeno, Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films, Journal of Physics and Chemistry of Solids, 60, 201, 1999
[113] H. Tang, H. Berger, P. Schmid, F. Lévy, and G. Burri, Photoluminescence in TiO2 anatase single crystals, Solid State Communications, 87, 847, 1993
[114] H. Tang, F. Lévy, H. Berger, and P. E. Schmid, Urbach tail of anatase TiO2, Physical Review B, 52, 7771, 1995
[115] R. Leonelli and J. L. Brebner, Time-resolved spectroscopy of the visible emission band in strontium titanate, Physical Review B, 33, 8649, 1986
[116] M. Watanabe, T. Hayashi, H. Yagasaki, and S. Sasaki, Luminescence process in anatase study by time-resolved spectroscopy, Int. J. Mod. Phys. B, 15, 3997, 2001
[117] R. A. Serway, Physics, 4th ed; Saunders College: Philadelphia, PA, 684697, 1996
[118] I. Lisiecki, F. Billoudet, M. P. Pileni, Control of the shape and the size of copper metallic particles, Journal of Physical Chemistry, 100, 4160, 1996
[119] M. A. EI-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes, Accounts of Chemical Research, 34, 257, 2001
[120] M. Kao, Simple criteria for epitaxial relationships between f.c.c. and b.c.c. crystals, Materials science and engineering A, 146, 205, 1991