簡易檢索 / 詳目顯示

研究生: 王紹宇
Wang, Shao-Yu
論文名稱: 整合行星齒輪式減速機與混合型步進馬達之設計與分析
Design and Analysis of Hybrid Stepping Motors with Integrated Planetary Gear Trains
指導教授: 顏鴻森
Yan, Hong-Sen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 混合型步進馬達行星齒輪系電磁場分析有限元素分析二次插值法機電整合整合設計
外文關鍵詞: Hybrid stepping motor, Planetary gear train, Electromagnetic analysis, Finite element analysis, Quadratic interpolation, Mechatronics, Integrated design
相關次數: 點閱:94下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 馬達的發明帶動了自動化工業的發展,如今更廣泛的被應用在各種動力需求的場合。為了有效的應用馬達的動力輸出,齒輪減速機構常用來與馬達進行搭配,但兩者的設計與製造是獨立進行再依所需功能進行選配,造成系統組成元件增加、動力傳輸路徑較長、能量在傳遞的過程產生多餘的損失、以及整體安裝空間較大等缺點,因此將馬達與減速機有效整合以解決上述缺點成為值得研究的目標。本研究以混合型步進馬達與行星齒輪系減速機做為整合對象,首先針對混合型步進馬達與行星齒輪系減速機的構造特性與運動原理進行探討,並歸納整合裝置的設計需求與限制,從中發想整合設計概念。接著,針對行星齒輪系的構形、齒形、齒數、速比、干涉情形、以及負載強度進行細部設計與分析。另,有關電磁場設計與分析部分,分別利用等效磁路法與有限元素法解析馬達的電磁場特性與輸出特性,並將其結果進行相互驗證;其後,以二次插值最佳化方法對馬達定轉子幾何構形進行細部最佳化設計,得到符合設計需求的最佳電磁參數組合。此外,提出一套系統化的整合設計流程,有效的進行混合型步進馬達與行星齒輪減速機的整合設計,同時藉由一現有的兩相混合型步進馬達做為整合設計實例,設計出一可行的創新整合裝置構形。最後,將所提出的整合裝置構形與現有設計進行輸出特性比較,分析結果顯示整合裝置在輸出轉矩、握持扭矩部分皆保持與現有設計相同水準,同時提升轉矩密度4.4%、降低轉矩漣波44.7%與節省軸向空間5.2%。

    The invention of electric motors promotes the development of automotive industries. Nowadays, electric motors have been widely used as power sources in various applications. Electric motors usually combine with gear reducers for the sake of providing desired power output with the highest efficiency. However, the motors and the reducers are designed and manufactured independently, then combined within expect functions, which causes several disadvantages like redundant mechanical elements usage, long power transmitting paths, extra power loss, and incompact workspace arrangement. Therefore, integrating motor and reducer properly becomes a worth research topic. This study proposes an integrated device, which combines the hybrid stepping motors (HSM) and planetary gear train (PGT) reducer with desire function. Firstly, an integrated design concept is generated from the concluded design requirements and constraints based on the detail survey of the configurations and kinematic structures of HSM and PGT reducer. Afterwards, detail design and analysis of PGT reducer are executed including configuration design, gear profiles design, teeth number design, reduction ratio design, interference analysis, and gear strength analysis. To the electromagnetic analysis of HSM, two general methods are introduced to analyze the electromagnetic characteristics and the output performance, including equivalent magnetic circuit analysis (EMCA) and finite element analysis (FEA). EMCA results are compared with that of FEA, and both results validate each other. Moreover, quadratic interpolation method is applied to the optimal design of the geometric configuration of HSM. Furthermore, a systematically design process is developed to implement the integrated devices in an efficiently way. Meanwhile, an existing two-phase hybrid stepping motor is used as a design example. Finally, a comparison of output performance between the existing design and the integrated design is made. The results show that the output torque and holding torque are about the same level, and the torque density and torque ripple improve about 4.4% and 44.7%, respectively. Moreover, the integrated device also reduces 5.2% on the axial space arrangement.

    摘要 i Abstract ii Extended Abstract iv 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 符號表 xvii 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 4 1-2-1 馬達設計與電磁場分析 4 1-2-2 行星齒輪系設計與運動分析 5 1-2-3 整合裝置設計與分析 6 1-3 研究目的 7 1-4 論文架構 8 第二章 概念設計 10 2-1 混合型步進馬達簡介 10 2-1-1混合型步進馬達基本構造 12 2-1-2 混合型步進馬達運動原理與特性 13 2-2 行星齒輪系簡介 16 2-2-1 行星齒輪系基本構造 16 2-2-2 行星齒輪系運動特性 18 2-3 整合設計構想 20 2-4 小結 23 第三章 齒輪減速機設計與分析 25 3-1 構形設計 25 3-2 齒輪設計 26 3-3 速比設計 30 3-4 干涉分析 32 3-4-1 外齒輪間的干涉 32 3-4-2 內外齒輪間的干涉 34 3-5 齒輪強度與負載分析 37 3-6 小結 43 第四章 電磁場特性分析 46 4-1 等效磁路法 46 4-2 有限元素法模擬驗證 58 4-3 小結 67 第五章 整合裝置之設計與分析 69 5-1 整合裝置之電磁場特性模擬 69 5-2 最佳設計 73 5-2-1 二次插值法簡介 73 5-2-2 應用二次插值法設計整合裝置 76 5-3 磁交鏈與反電動勢常數分析 96 5-4 轉矩特性分析 98 5-4-1 握持扭矩分析 98 5-4-2 輸出轉矩與轉矩漣波分析 99 5-5 小結 99 第六章 設計實例 101 6-1 整合設計流程 101 6-2 設計實例 103 6-3 小結 109 第七章 結論與建議 111 7-1結論 111 7-2建議 113 參考文獻 114 自述 121 著作權聲明 122

    [1] Athani, V., 1997, Stepper Motors: Fundamentals, Applications and Design, New Age International.
    [2] Antonello, R., Cenedese, A., and Oboe, R., 2011, “Torque Ripple Minimization in Hybrid Stepper Motors Using Acceleration Measurements,” IFAC Proceedings Volumes, 44(1), pp. 10349-10354.
    [3] Trago B., 2000, Hybrid Stepping Motor Having Optimized Torque Density, U. S. Patent No. 6,057,613.
    [4] Kazuo O., Masafumi S., and Koki I., 2003, Two-Phase Hybrid Type Stepping Motor, U. S. Patent No. 6,548,923 B2.
    [5] T. T. Lin, 2009, Low Vibration Hybrid Step Motor, U. S. Patent No. 7,586,221 B2.
    [6] Naohiro Y., Takeshi S., and Takatoshi K., 2015, Hybrid Stepping Motor, U. S. Patent No. 9,172,293 B2.
    [7] Mizutami, K., Hayashi, S., and Matsui, N., 1993, “Modeling and Control of Hybrid Stepping Motors,” Industry Applications Society Annual Meeting, Conference Record of the 1993 IEEE, pp. 289-294.
    [8] Matsui, N., Nakamura, M., and Kosaka, T., 1996, “Instantaneous Torque Analysis of Hybrid Stepping Motor,” IEEE Transactions on Industry Applications, Vol.32, No. 5, pp. 1176-1182.
    [9] 丁文,梁得亮,2009,“12/8極雙通道開關磁阻電機非線性數學模型與有限元分析”,電機與控制學報,哈爾濱,中國,Vol. 13, No. 2, pp. 190-195.
    [10] Dantzig, G. B., 1990, Origins of the Simplex Method, ACM.
    [11] Arora, J., 2011, Introduction to Optimum Design, 3rd Edition, Elsevier, Oxford, UK.
    [12] Lee, K. S., Debortoil, M. J., Lee, M. J., and Salon, S. J., 1991, “Coupling Finite Elements and Analytical Solution in the Air gap of Electric Machines,” IEEE Transactions on Magnetics, Vol. 27, No. 5, pp. 3955-3957.
    [13] Mizutani, R. and Matsui, N., 2000, “Design and Analysis of Low-Speed, High-Torque Permanent Magnet Motors,” Electrical Engineering in Japan, Vol. 132, No. 3, pp. 48-56.
    [14] Kim, T. H., Choi, J. H., Ko, K. C., and Lee, J., 2003, “Finite-Element Analysis of Brushless DC Motor Considering Freewheeling Diodes and DC Link Voltage Ripple,” IEEE Transactions on Magnetics, Vol. 39, No. 5, pp. 3274-3276.
    [15] Ohnishi, T. and Takahashi, N., 2000, “Optimal Design of Efficient IPM Motor Using Finite Element Method,” IEEE Transactions on Magnetics, Vol. 36, No. 5, pp. 3537-3539.
    [16] Tsai, M. C., Weng, M. H., and Hsieh, M. F., 2002, “Computer-Aided Design and Analysis of New Fan Motors,” IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3467-3474.
    [17] Lacombe, G., Foggia, A., Marechal, Y., Brunotte, X., and Wendling P., 2007, “From General Finite-Element Simulation Software to Engineering-Focused Software: Example for Brushless Permanent Magnet Motors Design,” IEEE Transactions on Magnetics, Vol. 43, No. 4, pp. 1657-1660.
    [18] Hsu, Y. S., Tsai, M. C., and Hsieh, M. F., 2008, “Novel Stator Design of Fan Motors Using Soft Magnetic Composites,” Journal of Applied Physics, Vol. 103, No. 7, Paper No. 07F109.
    [19] Wrobel, R. and Mellor, P. H., 2008, “Design Considerations of a Direct Drive Brushless Machine with Concentrated Windings,” IEEE Transactions on Energy Conversion, Vol. 23, No. 1, pp. 1-8.
    [20] Yan, G. J., Hsu, L. Y., Wang, J. H., Tsai, M. C., and Wu, X. Y., 2009, “Axial-Flux Permanent Magnet Brushless Motor for Slim Vortex Pumps,” IEEE Transactions on Magnetics, Vol. 45, No. 10, pp. 4732-4735.
    [21] Rao, E. S. and Prasad, P., 2012, “Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies,” International Journal of Power Electronics and Drive Systems, Vol. 2, No. 1, pp. 107-116.
    [22] Johnson, R. C. and Towfigh, K., 1966. “Application of Number Synthesis to Practical Problems in Creative Design,” ASME Paper, No. 65-WA-MD9.
    [23] Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Transections, Journal of Engineering for Industry, Vol. 93B, pp. 176-182.
    [24] Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms,” Journal of Mechanisms, Vol. 5, pp. 357-392.
    [25] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,” ASME Transections, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 3, pp. 329-337.
    [26] Chatterjee, G. and Tsai, L. W., 1994, “Enumeration of Epicyclic-Type Automatic Transmission Gear Trains,” Journal of Passenger Cars: Mechanical Systems, Vol. 103, pp. 1415-1426.
    [27] Tsai, L. W., 1995, “An Application of Graph Theory to the Detection of Fundamential Circuits in Epicyclic Gear Trains,” Technical Report TR 1995-97, Digital Repository at the University of Maryland, College Park, Maryland
    [28] Yan, H. S. and Hsieh, L. C., 1994, “Conceptual Design of Gear Differentials for Automotive Vehicles,” ASME Transactions, Journal of Mechanical Design, Vol. 116, No. 2, pp. 565-570.
    [29] Olson, D. G., Erdman, A. G., and Riley, D. R., 1991, “Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 113, No. 1, pp. 10-16.
    [30] Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
    [31] Hsu, C. H., 1993, “Synthesis of Kinematic Structure of Epicyclic Gear Trains by Admissible Graph Method,” Journal of Franklin Institute, Vol. 330, No. 5, pp. 913-927.
    [32] Hsu, C. H. and Hsu, J. J., 1997, “An Efficient Methodology for the Structural Synthesis of Geared kinematic Chains,” Mechanism and Machine Theory, Vol. 32, pp. 957-973.
    [33] Hsu, C. H. and Hsu, J. J., 2000, “Epicyclic Gear Trains for Automotive Automatic Transmissions,” Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, Vol. 214, pp. 523-532.
    [34] Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, Vol. 7, pp. 263-275.
    [35] Hsieh, H. I. and Tsai, L. W., 1996, ‘‘Kinematic Analysis of Epicyclic-Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities,’’ ASME Transactions, Journal of Mechanical Design, Vol. 118, No. 2, pp. 294-299.
    [36] Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
    [37] Yan, H. S. and Hsieh, L. C., 1991, “Kinematic Analysis of General Planetary Gear Trains,” Proceedings of the 8th World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia, Vol. 6, pp. 153-157.
    [38] Hsieh, L. C. and Yan, H. S., 1992, “Generalized Kinematic Analysis of Planetary Gear Trains,” International Journal of Vehicle Design, Vol. 13, Nos. 5/6, pp. 494-504.
    [39] 顏鴻森,蔡明祺,王心德,洪銀農,洪銀樹,2001,馬達與齒輪整合之裝置,中華民國發明專利第434,977號。
    [40] 顏鴻森,吳益彰,2006,整合行星齒輪系之直流無刷馬達,中華民國發明專利第I253800號。
    [41] Yan, H. S. and Wu, Y. C., 2006, “A Novel Design of a Brushless DC Motor Integrated with an Embedded Planetary Gear Train,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 5, pp. 551-557.
    [42] Yan, H. S. and Wu, Y. C., 2006, “A Novel Configuration for a Brushless DC Motor with an Integrated Planetary Gear Train,” Journal of Magnetism and Magnetic Materials, Vol. 301, No. 2, pp. 532-540.
    [43] Yan, H. S. and Wu, Y. C., 2007, Geared Motor with Planetary Gear Assembly, U. S. Patent No. 7,211,016.
    [44] 吳益彰,顏鴻森,2007,“一種新型齒輪馬達之構想設計”,第十屆全國機構與機器設計學術研討會,台中,台灣,論文編號A12。
    [45] 吳益彰,顏鴻森,2008,“整合式行星齒輪系與永磁無刷馬達之構想設計”,中國機械工程學會第二十五屆全國學術研討會,彰化,台灣,論文編號csme25-493。
    [46] Wu, Y. C., Chen, G. C., and Yan, H. S., 2011, “Optimization Design of a DC Commutator Motor with an Integrated Planetary Gear Train,” IEEE Transactions on Magnetics, Vol. 47, pp. 4461-4464.
    [47] Lee, R. Y., 2016, Design and Analysis of Switched Reluctance Motor with Integrated planetary Gear Trains, M. S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [48] Yan, H. S., Wang, H. T., and Liu, J. Y., 2006, “Structural Synthesis of Novel Integrated DC Gear Motors,” Mechanism and Machine Theory, Vol. 41, No. 11, pp. 1289-1305.
    [49] 吳益彰,林伯煒,2008,“整合式驅動馬達與內變速器之概念設計”, Motor Express,第303期,國立成功大學馬達科技研究中心,台南,台灣。
    [50] 蔡明祺,林博正,陳添智,王明賢,2005,同心式馬達設計與控制應用,國科會專題計畫結案報告,NSC91-2213-E-006-123,台北,台灣。
    [51] 蔡明祺,林博正,杜黎蓉,2003,雙同心軸馬達,中華民國發明專利第181543號。
    [52] 蔡明祺,林博正,杜黎蓉,2003,無段變速馬達,中華民國發明專利第183349號。
    [53] Wang, S. W., 2015, On the Design of an Innovative Cordless Drill, M. S. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    [54] 顏鴻森,1999,機構學,第二版,東華書局股份有限公司,台北,台灣。
    [55] 許正和,2006,創造性機構設計學,高立圖書有限公司,台北,台灣。
    [56] 賴耿陽,2006,新版實用齒輪設計法,復文書局,台南,台灣。
    [57] 小原齒輪工業株式會社,齒輪技術資料,琦玉,日本。
    [58] 朱敏德,2003,機械元件設計,新文京開發出版有限公司,台北,台灣。
    [59] 中國鋼鐵股份有限公司,電磁鋼捲電磁特性曲線,高雄,台灣。

    下載圖示 校內:2023-02-13公開
    校外:2023-02-13公開
    QR CODE