簡易檢索 / 詳目顯示

研究生: 林楷鈞
Lin, Kai-Chun
論文名稱: 光分碼接取網路中基於解碼器輸出入功率比較以達成竊聽偵測及指配碼重置之探討
Power-Comparison-based Eavesdropping Detection and Signature Reconfiguration for Optical Code-Division Multiple- Access Networks
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 62
中文關鍵詞: 最大長度序列碼光分碼多重存取網路保密性陣列波導光柵竊聽偵測指配碼重置
外文關鍵詞: Maximal-length sequence (M-sequence) codes, Optical code-division multiple-access (OCDMA), network confidentiality, arrayed-waveguide grating (AWG), eavesdropping detection, signature reconfiguration
相關次數: 點閱:140下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  在一般的通訊網路中,安全性的範疇主要為三大分類: 保密性、安全性以及可用性。而光分碼多重存取(Optical code-division multiple-access, OCDMA)系統同時提供了良好的保密性與可用性,因此其在提供優越的保密性上被視為非常具吸引力之技術。然而,光分碼多重存取技術仍然受到潛在的威脅,例如竊聽者利用特殊的設備攔截並還原已被編碼過後的傳輸訊號。
    在本論文中,我們提出了應用於光分碼多重存取網路的指配碼重置架構以改善多重使用者傳輸環境下的安全性。此架構主要基於兩種機制來設計:一、在被竊聽的使用者節點進行基於功率比較的竊聽偵測;二、在中央控制器的指令下,對每位使用者節點進行指配碼的重置。當使用者節點對遭受惡意攻擊時,我們透過傳輸訊號因竊聽者導致的顯著功率變化來實現竊聽偵測,並藉由中央控制器向使用者之收發器節點發送重置命令以改變其指配碼。我們使用最大長度序列碼(Maximal-length sequence, M-sequence)作為網絡節點的指配碼,並且利用陣列波導光柵(Arrayed-waveguide gratings, AWG)加以構建。在系統模擬的結果中顯示,當竊聽行為發生時,傳輸訊號的頻譜振幅明顯下降,並且透過得到的偵測閥值,我們可以有效地偵測竊聽行為。 另外,於傳輸訊號被竊聽的機率進行分析的結果也指出,本論文所提出的竊聽偵測機制能夠顯著的降低被竊聽之機率以大幅提升網路的保密性。

    In communication networks, security is traditionally divided into three categories: integrity, confidentiality and availability. Potentially, optical code-division multiple-access (OCDMA) system may provide both confidentiality and availability protection. Therefore, OCDMA has been seen as a superior candidate to offer confidentiality. However, OCDMA techniques still suffer from inherent security disadvantages, such as eavesdropping by an attacker with specific device to intercept and recover the transmitted signals that has been encoded.
    In this thesis, a scheme of signature code reconfiguration over OCDMA network is proposed to enhance multiple-users data transmission security. The security scheme is devised on the basis of two mechanisms: (1). Eavesdropping detection based on power comparison in local node; (2). Signature codes reconfiguration in each node on command of central control station. On eavesdropping detection, we sense significant power change while communicating nodes pair is suffering malicious attack. On signature reconfiguration, central station sends commands to the communicating transceiver nodes to change their signature keys.
    We illustrate with maximal-length sequence (M-sequence) codes as signature keys to the network nodes. These signatures are structured over arrayed-waveguide gratings (AWGs) devices. Simulation result shows that the spectral amplitude drops obviously after eavesdropping and the threshold value can be determined in order to detect the eavesdropping effectively. Also, the result of the analysis on eavesdropping probability shows that the confidentiality performance is significantly enhanced when considering the proposed eavesdropping detection on signature reconfiguration.

    中文摘要..................................................i ABSTRACT................................................ii 誌謝(Acknowledgement)..................................iii CONTENTS................................................iv LIST OF TABLES..........................................vi LIST OF FIGURES........................................vii Chapter 1. Introduction..................................1 1.1 Development of Optical CDMA..........................1 1.2 Eavesdropping Strategy in OCDMA Networks.............4 1.3 Motivation of Our Research...........................6 1.4 Thesis Preview.......................................8 Chapter 2. Securing Optical CDMA Networks with Signature Reconfiguration.........................................10 2.1 Signature Reconfiguration in Optical CDMA Networks..11 2.2 Maximal Length Sequence (M-sequence)................13 2.3 Codec Structures and Operations.....................15 Chapter 3. Eavesdropping Detection over Optical CDMA Networks................................................24 3.1 Attack Detection in All-Optical-Networks............24 3.1.1 Power detection method............................25 3.1.2 Optical spectral analysis method..................25 3.1.3 Pilot tone methods................................26 3.1.4 Parameter-Comparison Method.......................27 3.2 The Power-Comparison Based Eavesdropping Detection..29 3.2.1 System Structure..................................30 3.2.2 Derivation of the Threshold.......................32 3.3 Installation of Eavesdropping Detection Module......34 3.3.1 Detection Module on Receiver Decoder..............34 3.3.2 Detection Module on Complementary Decoder.........36 3.4 Comparison of Detecting Sensitivity.................39 Chapter 4. Signature Keys Reconfiguration upon Eavesdropping Detection.................................41 4.1 Structure of the Proposed Reconfiguration Scheme....41 4.2 Example: Operation of Signature Keys Reconfiguration ........................................................43 Chapter 5. Simulation and Performance Analysis..........48 5.1 Simulation and Discussion...........................48 5.2 Detection Probability on Power Comparisons..........51 5.3 Eavesdropping Probability...........................54 Chapter 6. Conclusions..................................58 References..............................................60

    [1] J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quant. Electron., vol. 13, pp. 1351-1369, Sept.-Oct. 2007.
    [2] S. Etemad, A. Agrawal, T. Banwell, J. Jackel, R. Menendez, P. Toliver, “OCDM-based photonic layer security scalable to 100 Gbits⁄s for existing WDM networks,” Journal of Optical Networking, vol. 6, Issue 7, pp. 948-967, July 2007.
    [3] A. Stok and E. H. Sargent, “The role of optical CDMA in access networks,” IEEE Commun. Mag., vol. 40, no. 9, pp. 83–87, Sept. 2002.
    [4] Nasaruddin and T. Tsujioka, "Design of Reconfigurable Multiweight Wavelength-Time Optical Codes for Secure Multimedia Optical CDMA Networks," IEEE International Conference on Communications (ICC'08), Beijing, pp. 5437-5442, 2008.
    [5] A. Nirmalathas, N. Nadarajah and E. Wong, "Multiple secure virtual private networks over passive optical networks using electronic CDMA," IEEE/LEOS Summer Topical Meeting (LEOSST '09), pp. 13-14, Newport Beach, CA, 2009.
    [6] J. F. Huang, S. H. Meng, and Y. C. Lin, "Securing optical Code-Division Multiple-Access Networks with a Post-Switching Coding Scheme of Signature Reconfiguration," Optical Engineering, vol. 53(11), pp. 116101-1 ~ 116101-11, Nov. 2014.
    [7] P. R. Prucnal, M. P. Fok, Y. Deng, and Z. Wang, “Physical layer security in fiber-optic networks using optical signal processing,” Optical Transmission Systems, Switching, and Subsystems VII, Proc. SPIE-OSA-IEEE Asia Communications and Photonics, pp. 1-10, Nov. 2009.
    [8] T. H. Shake, “Security performance of optical CDMA against eavesdropping,” IEEE J. Lightwave Technol., vol. 23, no. 2, pp. 655–670, Feb. 2005.

    [9] M. L. F. Abbade, L. A. Fossaluzza Jr., C. A. Messani, G. M. Taniguti, E. A. M. Fagotto, and I. E. Fonseca, “All-Optical Cryptography through Spectral Amplitude and Delay Encoding,” Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol.12, no.2, São Caetano do Sul., Dec. 2013.

    [10] J. F. Huang, K. S. Chen, Y. C. Lin, and C. Y. Li, “Reconfiguring Waveguide- Gratings-based M-Signature Codecs to Enhance OCDMA Network Confidentiality,” Optics Communications, vol. 313C, pp. 223-230, Feb. 2014.

    [11] K. Kravtsov and P. R. Prucnal, "Ultrashort Optical Pulse Detection for High-Speed Asynchronous Optical CDMA Networks," IEEE J. Lightwave Technology, vol. 27, no. 18, pp. 4069-4075, Sept. 2009.

    [12] J. A. Salehi, “Code division multiple-access techniques in optical fiber networks—Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, no. 8, pp. 834–842, Aug. 1989.

    [13] D. Zaccarin and M. Kavehrad, "An optical CDMA system based on spectral encoding of LED," IEEE Photon. Technol. Lett., vol. 5, pp. 479-482, 1993.

    [14] X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728–729, Apr. 13, 2000.
    [15] Muriel Medard, S. R. Chinn, P. Saengudomlert, “Attack Detection in All-Optical Networks,” Optical Fiber Communication Conference and Exhibit, pp. 272-273, Feb. 1998.
    [16] Chao Qi, Jiangxing Wu, Hongchao Hu, Guozhen Cheng, Wenyan Liu, Jianjian Ai, Chao Yang, "An Intensive Security Architecture with Multi-Controller for SDN," IEEE Conference on Computer Communications Workshops (INFOCOM), pp. 401-402, San Francisco, CA, USA, April. 2016.
    [17] H. Takahashi, K. Oda, Hhma Toba, and Yasuyuki Inoue, “Transmission Characteristics of Arrayed Waveguide N x N Wavelength Multiplexer,” Journal of Lightwave Technology, vol. 13, no. 3, Mar. 1995.
    [18] A.V. Yakovlev, “An Optical-Fiber System for Transmitting Confidential Information,” Telecommunications and Radio Engineering, vol. 4, pp. 1-6, 1995.
    [19] R. Erkander, “Optical Fibre Security System ZAT 4',” Ericsson Review, vol. 67, no. 1, pp. 35-41, 1986.
    [20] J.H. Bowen, D.L. Baldwin, P.R. Couch, “Secure Fiber Optic Data Transmission System,” United States Patent, no. 4,435,850, March, 1984.
    [21] C.-L. Lu, D.J.M. Sabido IX, Perluigi Pogglioni, R.T. Hofmeister, L.G. Kazovsky, "CORD- A WDMA Optical Network: Subcarrier-Based Signaling and Control Scheme,” IEEE Photonics Technology Letters, vol. 7, no. 5, pp. 555-557, May 1995.
    [22] M.J. Minardi, M.A. Ingram, “Adaptive Crosstalk Cancellation and Laser Frequency Drift Compensation in Dense WDM Networks,” Journal of Lightwave Technology, vol. 13, no. 8, pp. 1624-1635, August 1995.

    下載圖示 校內:2019-01-15公開
    校外:2019-01-15公開
    QR CODE