簡易檢索 / 詳目顯示

研究生: 葉俊廷
Yeh, Chun-Ting
論文名稱: 含釹之鈦酸鋇塊材之製備及其熱電性質之研究
Preparation and thermoelectric properties of Nd-doped BaTiO3 bulk materials
指導教授: 黃啟祥
Hwang, Chii-Shyang
共同指導教授: 吉村昌弘
Masahiro Yoshimura
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 83
中文關鍵詞: 熱電材料鈦酸鋇燒結
外文關鍵詞: Thermoelectric materials, BaTiO3, Nd, Sintering
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料是利用電子移動,不需任何機械動件即可以進行熱能電能轉換的材料;而陶瓷熱電材料更具有成本低廉、無汙染等之優點,是備受期待的材料之一。陶瓷中之鈦酸鋇 (BaTiO3) 是具有鈣鈦礦型結構的典型鐵電體,由於其結構比較簡單,多年來人們對它進行了大量的研究,但在其熱電性質方面之研究較少。
    本研究旨在檢討釹的摻雜對於鈦酸鋇粉體之燒結行為與燒結體熱電性質之影響。本研究以固相反應法合成釹離子添加之鈦酸鋇粉末,以熱膨脹儀分析其燒結收縮曲線,以阿基米德法量測燒結體密度,以SEM觀察粉體粒徑及燒結體晶粒大小,以Seebeck係數/電阻量測系統及雷射熱導儀量測熱電性質。含釹之鈦酸鋇粉體是以固相反應法經1150℃/5 h煅燒合成而得,其粉末顆粒大小為320-480 nm。經1400℃常壓燒結5 h所得的塊材,含4 at.% Nd試樣其相對密度最低,其餘含釹(2, 6, 8, 10 at.%)試樣之相對密度皆高於93%;最大燒結收縮速率溫度則是隨Nd添加量的增加而降低。釹之添加可抑制鈦酸鋇晶粒之成長,含釹之燒結體晶粒大小為1 μm以下,小於未含釹之鈦酸鋇燒結體晶粒之4 μm。
    在燒結體的熱電性質方面,隨著釹含量之增加,其電傳導值有先增後減的趨勢,在892 K時含6 at.% Nd之試樣有最高的電傳導值為0.38 S/cm;Seebeck係數則無明顯的變化趨勢,最大的Seebeck係數值為在890 K時含8 at.% Nd試樣之-25.30 μV/K;功率因子的變化和電傳導係數相似,皆為先增後減,在745 K時含6 at.% Nd之試樣有最高的功率因子,其值為99.73 μW/mK2。

    Thermoelectric materials utilize electron transportation to change heat to electrical energy and vice versa without moving parts. Ceramic is one of the expected thermoelectric materials, because of their lower cost and no pollution. Barium titanate (BaTiO3) is a classic ferroelectric material with CaTiO3 structure. Owing to its simpler structure, people have done many related research for decades, but fewer studies in its thermoelectric properties.
    In this research, we study the effect of neodymium-doping on the sintering behavior and thermoelectric properties of neodymium-doped barium titanate. The powders were prepared by conventional solid-state reaction. The results show that the BaTiO3 powders with particle size of 320-480 nm synthesized after calcination at 1150℃/5 h. After sintering at 1400℃/5 h, all sintered bodies have relative density higher than 93%, except for 4 at.% Nd samples. Maximum shrinkage temperature shifts to lower temperature as neodymium addition increases. Nd-doped sintered bodies with grain sizes below 1 μm, smaller than 4 μm of BaTiO3.
    In terms of thermoelectric properties, the electrical conductivity increases then decreases with the increasing neodymium contents. At 892 K, 6 at.% Nd sample has the highest electrical conductivity of 0.38 S/cm. However, there is no clear tendency of Seebeck coefficient. At 890 K, 8 at.% Nd sample has maximum Seebeck coefficient of -25.30 μV/K. Power factor has similar trend as electrical conductivity. At 745 K, 6 at.% Nd sample has the largest power factor of 99.73 μW/mK2.

    摘要............................................ I Abstract.......................................II 誌謝............................................IV 目錄............................................ V 表目錄........................................VIII 圖目錄..........................................IX 第一章 緒論.......................................1 1-1 前言........................................ 1 1-2 研究動機與目的................................ 4 第二章 相關文獻回顧與整理........................... 5 2-1 基本熱電效應.................................. 5 2-1-1 Seebeck效應................................5 2-1-2 Peltier效應................................7 2-1-2 Thomson效應................................7 2-1-3 三種熱電效應之關聯性..........................7 2-1-4 熱電優值與能源轉換效率........................8 2-2 熱電效應的應用................................ 10 2-3 熱電材料的介紹 ................................14 2-4 熱電塊材的製備方法............................. 16 2-4-1 粉末冶金法................................. 16 2-4-2 熔煉法..................................... 17 2-5 鈦酸鋇的晶體結構.............................. 18 2-6 鈦酸鋇之常見製備方法........................... 19 2-7 鈦酸鋇熱電相關研究............................. 22 第三章 實驗方法與步驟.............................. 41 3-1 粉末與燒結體的製備............................. 41 3-2 性質分析..................................... 42 3-2-1 粉末之熱差/熱重分析 (DTA/ TG)................ 42 3-2-2 燒結收縮曲線量測............................ 42 3-2-3 結晶相鑑定..................................42 3-2-4 燒結體密度量測.............................. 43 3-2-5 顯微結構分析................................ 43 3-3 熱電性質量測.................................. 44 3-3-1 Seebeck係數和電傳導係數量測.................. 44 3-3-2 熱傳導係數量測.............................. 45 第四章 結果與討論..................................50 4-1 粉末之熱差/熱重分析 (DTA/ TG).................. 50 4-2 Ba1-XNdXTiO3粉末.............................50 4-2-1 Ba1-xNdxTiO3粉末之相分析.................... 50 4-2-2 Ba1-xNdxTiO3粉末之形貌分析.................. 50 4-3 Ba1-XNdXTiO3燒結體........................... 51 4-3-1 燒結收縮曲線 ................................51 4-3-2 燒結體之相分析.............................. 52 4-3-3 燒結體晶格常數之變化......................... 53 4-3-4 燒結體顯微結構分析........................... 54 4-3-5 燒結體密度..................................55 4-4 燒結體之熱電性質...............................56 4-4-1 電傳導係數 (σ) 與溫度及不同釹含量之關係.........56 4-4-2 Seebeck係數 (S) 與溫度及不同釹含量之關係.......57 4-4-3 功率因子 (S2σ) 與溫度及不同釹含量之關係........ 58 4-4-4 ZT值推估................................... 58 第五章 結論.......................................77 第六章 未來工作....................................79 參考文獻..........................................80

    1. M. N. Khan, H.-T. Kim, H. Minami, H. Uwe. Thermoelectric properties of niobium doped hexagonal barium titanate. Materials Letters. 2001, 47, pp. 95-101.
    2. T. Kolodiazhnyi, A. Petric, M. Niewczas. Thermoelectric power, Hall effect, and mobility of n-type BaTiO3. Physical Review B. 2003, 68, p. 085205.
    3. H. Muta, K. Kurosaki, S. Yamanaka. Thermoelectric properties of doped BaTiO3–SrTiO3 solid solution. Alloys and Compounds. 2004, 368, pp. 22-24.
    4. H. Anno, K. Yamaguchi, T. Nakabayashi, H. Kurokawa, F. Akagi, M. Hojo, N. Toshima. Thermoelectric properties of conducting polyaniline/BaTiO3 nanoparticle composite films. IOP Conf. Series: Materials Science and Engineering. 2011, 18, p. 142003.
    5. Pollock, D. D. Thermoelectric Phenomena. [book auth.] D. M. Rowe. CRC Handbook of Thermoelectrics. s.l. : CRC Press, 1994, A-2.
    6. H. Obara, A. Yamamoto, C.-H. Lee, K. Kobayashi, A. Matsumoto, R. Funahashi. Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3. Japanese Journal of Applied Physics. 2004, 43, pp. L540-L542.
    7. D. E. Rase, R. Roy. Phase Equilibria in the System BaO-TiO2. American Ceramic Society. 1955, 38, 3, pp. 102-113.
    8. Cater, R. E. Kinetic Model for Solid-State Relation. Chemical Physics. 1961, 34, p. 2010.
    9. K.-H. Felgnera, T. Muller, H. T. Langhammera, H.-P. Abicht. On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating. Materials Letters. 2004, 58, pp. 1943-1947.
    10. A. Beauger, J. C. Mutin, J. C. Niepce. Synthesis reaction of metatitanate BaTiO3, Part 1. Materials Science. 1983, 18, pp. 3041-3046.
    11. A. Beauger, J. C. Mutin, J. C. Niepce. Synthesis reaction of metatitanate BaTiO3, Part 2. Materials Science. 1983, 18, pp. 3543-3550.
    12. 久保輝一郎,加藤誠軌,藤田恭. 二氧化鈦與碳酸鋇之固態反應. 日本工業化學雜誌, 1967年,第 6 冊, 頁 847-853.
    13. Pechini, M. P. Barium Titanium Citrate, Barium Titanate and Processes for Producing Same. Patent number 3231328 USA, 1 25, 1966.
    14. D. Hennings, W. Mayr. Thermal decomposition of (BaTi) citrates into barium titanate. Solid State Chemistry. 1978, 26, 4, pp. 329-338.
    15. G. A. Hutchins, G. H. Maher, S. D. Ross. Control of the Ba: Ti ratio of BaTiO3 at a value of exactly 1 via conversion to BaO•TiO2•3C6H8O7•3H2O. American Ceramic Society Bulletin. 1987, 66, 4, pp. 681-684.
    16. Pechini, M. P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor. Patent number 3330697 USA, 7 11, 1967.
    17. M. Kakihana, M. M. Milanova, M. Arima, T. Okubo, M. Yashima, M. Yoshimura. Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex. American Ceramic Society. 1996, 79, 6, pp. 1673-1676.
    18. S. G. Cho, P. F. Johnson, R. A. Condrate. Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process. Materials Science. 1990, 25, 11, pp. 4738-4744.
    19. R. P. Mahajan, K. K. Patankar, M. B. Kothale, S. A. Patil. Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites. Bulletin of Materials Science. 2000, 23, 4, pp. 273-279.
    20. J.-C. Li, C. Zhang, R.-Z. Zhang, C.-L. Wang, J.-L. Zhang, M.-L. Zhao, L.-M. Mei. Electronic structure and thermoelectric properties of Fe-doped BaTiO3 and SrTiO3. 2007, pp. 175-179.
    21. L. Bell, Technology requirements for solid state power conversion. 2004. DOE/EPRI High Efficient Thermoelectric Workshop.
    22. Ken, Omegatron. File:Seebeck effect circuit 2.svg. [Online] 8 6, 2008. http://zh.wikipedia.org/wiki/File:Seebeck_effect_circuit_2.svg.
    23. K. Brazier, File:Thermoelectric Cooler Diagram.svg. [Online] 1 11, 2008. http://en.wikipedia.org/wiki/File:Thermoelectric_Cooler_Diagram.svg.
    24. D. M. Rowe. CRC Handbook of Thermoelectrics. CRC Press, 1994, A-3, pp. 19-25
    25. R. Richman, Prospects for efficient thermoelectric materials in the near term. San Diego, CA., 2002, DARPA/DOE High Efficient Thermoelectric.
    26. TE Technology Inc. Frequently asked questions on thermoelectrics. [Online] 12 2005. http://www.tetech.com/techinfo/#faqs.
    27. F. Stabler, Automotive applications for high efficiency thermoelectrics. San Diego, CA., 2002, DARPA/DOE High Efficient Thermoelectric Workshop.
    28. E. Thacher, Electric energy generation from the exhaust of a light truck. 2004, DOE/EPRI High Efficient Thermoelectric Workshop.
    29. Hi-Z Technology Inc. Thermoelectric truck engine generator. [Online] 12 2005. http://www.hi-z.com/websit07.htm.
    30. R. Alimov, Radioisotope thermoelectric generators. [Online] 8 2007. http://www.bellona.org/english_import_area/international/russia/navy/northern_fleet/incidents/31772.
    31. Kryotherm Inc. Products. [Online] 12 2005. http://www.kryotherm.ru/.
    32. Walmart. Product from Walmart. [Online] 2007. http://www.walmart.com/.
    33. Just Gulp. Cooled Water UK. [Online] 2007. http://www.cooledwater.com/.
    34. RMT Inc. [Online] 2011. http://www.rmtltd.ru/.
    35. W. D. Kingery, H. K. Bowen, D. R. Uhlmann. Introduction to Ceramics. New York : John Wiley and Sons, 1976.
    36. B. Jaffe, W. R. Cook. Jr, H. Jaffe. Piezoelectric Ceramics. Cleveland, Ohio, USA : William R. Cook Jr. and Hans Jaffe Gould Inc., 1971.
    37. M. S. G. Baythoun, F. R. Sale. Production of Strontium-substituted Lanthanum Manganite Perovskite Powder by the Amorphous Citrate Process. Materials Science. 1982, 17, 9, pp. 2757-2769.
    38. Lessing, P. A. Mixed-Cation Oxide Powders via Polymeric Precursors. American Ceramic Society Bulletin. 1989, 68, 5, pp. 1002-1007.
    39. T. R. N. Kutty, P. Murugaraj. Phase relations and dielectric properties of BaTiO3 ceramics heavily substituted with neodymium. Materials Science. 1987, 22, pp. 3652-3664.

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE