簡易檢索 / 詳目顯示

研究生: 洪觀美
Hung, Kuan-Mei
論文名稱: 鎳鈷磷硫化物應用於電催化同步產氫與5-羥甲基糠醛氧化之研究
Nickel Cobalt Phosphorus Sulfide for Simultaneously Electrocatalytic Hydrogen Evolution and Oxidation of 5-hydroxymethylfurfural
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 過渡金屬硫化物過渡金屬磷化物電催化產氫電催化5-羥甲基糠醛氧化反應同步產氫與氧化生物質反應
外文關鍵詞: transition metal sulfides, transition metal phosphides, electrocatalytic oxidation of 5-hydroxymethylfurfural, simultaneous hydrogen production and oxidation of biomass
相關次數: 點閱:54下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以相對低溫之化學浴法,結合短時間之磷化熱處理方式,在泡沫鎳基板上合成鎳鈷磷硫化物作為產氫及氧化5-羥甲基糠醛(HMF)之雙功能電觸媒電極。為避免HMF在強鹼環境中嚴重的降解情形,本研究在0.1 M KOH電解液中電催化產氫反應(HER)與氧化HMF反應(HMFOR)。在三極式系統中,優化之鎳鈷磷硫電極在1.52 V vs RHE之下催化10 mM 之HMFOR,結果顯示三小時後之HMF轉化率為99.03%,而2,5-呋喃二甲酸(FDCA)之選擇率為92.51%,法拉第效率為95.19%。另外,鎳鈷磷硫電極生成氫氣之法拉第效率為98.5%,並於12小時內維持99.99%之穩定性。本研究進一步在二極式系統中,以鎳鈷磷硫電極進行同步產氫與氧化HMF之電催化反應。以HMFOR取代OER之結果顯示,當電流密度達10 mA cm-2時,所需施加之電壓顯著降低了165 mV。另外,在二極式系統中定電壓(2.12 V)催化5 mM 之HMFOR, 結果顯示78分鐘後之HMF轉化率為95.01%,而FDCA之選擇率與法拉第效率分別為84.32%與87.11%,而生成氫氣之法拉第效率為96.07%。本研究成功地利用非貴金屬電觸媒電極,同步生產高附加價值之化學品FDCA和乾淨的能源H¬2,提升電催化產氫之經濟效益。

    In this study, a relatively low-temperature chemical bath combined with phosphating heat treatment was used to synthesize nickel-cobalt phosphorus sulfide on nickel foam as an electrocatalyst for hydrogen evolution reaction (HER) and 5-hydroxymethylfurfural oxidation reaction (HMFOR). To avoid the severe degradation of HMF, this study performed electrocatalytic HER and HMFOR in 0.1 M KOH. In a three-electrode system, the optimized electrode catalyzed 10 mM HMFOR at 1.52 V vs RHE, and the HMF conversion was 99.03%, while the selectivity of 2,5-furandicarboxylic acid (FDCA) is 92.51%, and the Faraday efficiency (FE) is 95.19%. In addition, the FE of HER is 98.5%, and it maintains a stability of 99.99% within 12 hours. In the two-electrode system, the optimized electrode was used to catalyze HER and HMFOR. The results of replacing OER with 5 mM HMF HMFOR showed that when current density reached 10 mA cm-2, the cell voltage was reduced by 165 mV. Furthermore, the results of catalyzing a 5 mM HMFOR at 2.12 V showed that the conversion of HMF was 95.01%, while the selectivity and FE of FDCA were 84.32% and 87.11%, respectively. Also, The FE of HER is 96.07%. In this study, non-precious electrocatalyst were used to simultaneously produce FDCA and H2, improving the economic benefits of electrocatalytic hydrogen production.

    摘要 I 致謝 V 總目錄 VIII 圖目錄 XII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 電催化產氫反應 3 2.1.1 HER之基本原理 3 2.1.2 研究電催化活性之參數 4 2.1.2.1 過電位與極化曲線 4 2.1.2.2 塔菲爾斜率 5 2.1.2.3 電化學阻抗譜 6 2.1.2.4 電化學活性面積 8 2.1.2.5 法拉第效率 9 2.1.2.6 氫鍵能 9 2.1.2.7 穩定性 10 2.1.3 電催化產氫之發展 10 2.2 電催化5-羥甲基糠醛氧化反應 12 2.2.1 電催化5-羥甲基糠醛氧化反應簡介 12 2.2.2 電催化5-羥甲基糠醛氧化反應之機制 13 2.2.3 不同pH值電催化5-羥甲基糠醛氧化反應 15 2.2.4 電催化5-羥甲基糠醛氧化反應之發展 16 第三章 實驗方法 18 3.1 實驗材料 18 3.1.1 化學浴製備鎳鈷硫化物 18 3.1.2 爐管熱處理 18 3.1.3 電催化實驗材料 18 3.2 材料合成步驟 19 3.1.1 化學浴製備鎳鈷硫化物 19 3.1.2 爐管熱處理 20 3.3 材料分析與鑑定 21 3.3.1 掃描式電子顯微鏡(Scanning electron microscope) 21 3.3.2 穿透式電子顯微鏡(Transmission electron microscope) 21 3.3.3 X光繞射分析儀(X-ray diffractometer) 22 3.3.4 化學分析電子能譜儀(Electron Spectroscopy For Chemical Analysis) 22 3.3.5 拉曼散射光譜儀(Raman scattering spectrometer) 23 3.3.6 氣相層析儀(Gas chromatography) 24 3.3.7 高效能液相層析儀(High Performance Liquid Chromatography) 24 3.4 電化學實驗 25 第四章 結果與討論 28 4.1 鎳鈷磷硫化物形貌與結構分析 28 4.2 鎳鈷磷硫化物應用於電催化水分解之研究 38 4.2.1 極化曲線與阻抗分析 38 4.2.2 非法拉第區域循環伏安與電化學活性面積 42 4.2.3 產氫反應之法拉第效率與穩定性分析 44 4.3 鎳鈷磷硫化物應用於電催化HMF氧化之研究 48 4.3.1 極化曲線與材料對HMF之活性分析 48 4.3.2 定電壓催化5-羥甲基糠醛氧化反應與產物之定量分析 51 4.3.3 5-羥甲基糠醛氧化反應之穩定性分析 54 4.4 雙功能鎳鈷磷硫化物應用於二極式電解槽之研究 56 第五章 結論 59 第六章 參考資料 62

    1. Zhu, J., et al., Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chemical reviews, 2019. 120(2): p. 851-918.
    2. Sun, X., et al., Solar energy catalysis. Angewandte Chemie, 2022. 134(29): p. e202204880.
    3. Joo, J., et al., Morphology-Controlled Metal Sulfides and Phosphides for Electrochemical Water Splitting. Advanced Materials, 2019. 31(14): p. 23.
    4. You, B., et al., A General Strategy for Decoupled Hydrogen Production from Water Splitting by Integrating Oxidative Biomass Valorization. Journal of the American Chemical Society, 2016. 138(41): p. 13639-13646.
    5. Jiang, X.L., et al., Electrocatalytic oxidation of 5-hydroxymethylfurfural for sustainable 2,5-furandicarboxylic acid production-From mechanism to catalysts design. Susmat, 2023. 3(1): p. 21-43.
    6. You, B. and Y.J. Sun, Innovative Strategies for Electrocatalytic Water Splitting. Accounts of Chemical Research, 2018. 51(7): p. 1571-1580.
    7. Wang, S., A.L. Lu, and C.J. Zhong, Hydrogen production from water electrolysis: role of catalysts. Nano Convergence, 2021. 8(1): p. 23.
    8. Tan, Z.H., et al., Recent Advances in Defect-Engineered Transition Metal Dichalcogenides for Enhanced Electrocatalytic Hydrogen Evolution: Perfecting Imperfections. Acs Omega, 2023. 8(2): p. 1851-1863.
    9. Wei, G.F., Y.H. Fang, and Z.P. Liu, First Principles Tafel Kinetics for Resolving Key Parameters in Optimizing Oxygen Electrocatalytic Reduction Catalyst. Journal of Physical Chemistry C, 2012. 116(23): p. 12696-12705.
    10. Bredar, A.R.C., et al., Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. Acs Applied Energy Materials, 2020. 3(1): p. 66-98.
    11. Laschuk, N.O., E.B. Easton, and O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. Rsc Advances, 2021. 11(45): p. 27925-27936.
    12. Connor, P., et al., The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Zeitschrift Fur Physikalische Chemie-International Journal of Research in Physical Chemistry & Chemical Physics, 2020. 234(5): p. 979-994.
    13. Jin, M.T., et al., Strategies for Designing High-Performance Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities above 1000 mA cm(-2). Acs Nano, 2022. 16(8): p. 11577-11597.
    14. Zhao, Y.Y., et al., Recent advances in the electrocatalytic synthesis of 2,5-furandicarboxylic acid from 5-(hydroxymethyl)furfural. Journal of Materials Chemistry A, 2021. 9(36): p. 20164-20183.
    15. van Putten, R.J., et al., Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013. 113(3): p. 1499-1597.
    16. Yang, Y.C. and T.C. Mu, Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021. 23(12): p. 4228-4254.
    17. Motagamwala, A.H., et al., Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. Science Advances, 2018. 4(1): p. 8.
    18. Peng, L.S., S.S.A. Shah, and Z.D. Wei, Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chinese Journal of Catalysis, 2018. 39(10): p. 1575-1593.
    19. Xie, Y.A., et al., An Overall Reaction Integrated with Highly Selective Oxidation of 5-Hydroxymethylfurfural and Efficient Hydrogen Evolution. Advanced Functional Materials, 2021. 31(34): p. 11.
    20. Luo, R.P., et al., A Bimetallic Phosphide@Hydroxide Interface for High-Performance 5-Hydroxymethylfurfural Electro-Valorization. Journal of Physical Chemistry C, 2023. 127(10): p. 4967-4974.
    21. Du, L., Y. Sun, and B. You, Hybrid water electrolysis: replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports: Energy, 2021. 1(1): p. 100004.
    22. Huang, C.Q., et al., Integrating Hydrogen Production with Aqueous Selective Semi-Dehydrogenation of Tetrahydroisoquinolines over a Ni2P Bifunctional Electrode. Angewandte Chemie-International Edition, 2019. 58(35): p. 12014-12017.
    23. Zhou, Y.F., Y. Shen, and H.Y. Li, Mechanistic study on electro-oxidation of 5-hydroxymethylfurfural and water molecules via operando surface-enhanced Raman spectroscopy coupled with an Fe3+ probe. Applied Catalysis B-Environmental, 2022. 317: p. 12.
    24. Wang, H.L., Y.M. Zhou, and S.Y. Tao, CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Applied Catalysis B-Environmental, 2022. 315: p. 10.
    25. Vuyyuru, K.R. and P. Strasser, Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. Catalysis Today, 2012. 195(1): p. 144-154.
    26. Barwe, S., et al., Electrocatalytic Oxidation of 5-(Hydroxymethyl)furfural Using High-Surface-Area Nickel Boride. Angewandte Chemie-International Edition, 2018. 57(35): p. 11460-11464.
    27. Giannakoudalds, D.A., et al., Nanoengineered Electrodes for Biomass-Derived 5-Hydroxymethylfurfural Electrocatalytic Oxidation to 2, 5-Furandicarboxylic Acid. Acs Sustainable Chemistry & Engineering, 2021. 9(5): p. 1970-1993.
    28. Feng, Y.X., et al., Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid via metal-organic framework-structured hierarchical Co3O4 nanoplate arrays. Journal of Colloid and Interface Science, 2023. 632: p. 87-94.
    29. Wang, W., et al., Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Dalton Transactions, 2021. 50(31): p. 10922-10927.
    30. Zhang, N.N., et al., Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie-International Edition, 2019. 58(44): p. 15895-15903.
    31. You, B., et al., Simultaneous H2 generation and biomass upgrading in water by an efficient noble‐metal‐free bifunctional electrocatalyst. Angewandte Chemie International Edition, 2016. 55(34): p. 9913-9917.
    32. Lu, X.Y., et al., Highly Efficient Electro-reforming of 5-Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure-Function Relationships. Angewandte Chemie-International Edition, 2021. 60(26): p. 14528-14535.
    33. Gao, L.F., et al., Hierarchical Nickel-Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. Chemsuschem, 2018. 11(15): p. 2547-2553.
    34. Hauke, P., et al., Article Efficient electrolysis of 5-hydroxymethylfurfural to the biopolymer-precursor furandicarboxylic acid in a zero-gap MEA-type electrolyzer. Cell Reports Physical Science, 2021. 2(12): p. 17.
    35. Zhou, M.J., J.M. Chen, and Y.W. Li, CoP nanorods anchored on Ni2P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catalysis Science & Technology, 2022. 12(13): p. 4288-4297.
    36. Chen, J.M., et al., Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co-CoSx heterojunction by intensified spin polarization. Chemical Science, 2022. 13(16): p. 4647-4653.
    37. Kubota, S.R. and K.S. Choi, Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid (FDCA) in Acidic Media Enabling Spontaneous FDCA Separation. Chemsuschem, 2018. 11(13): p. 2138-2145.
    38. Latsuzbaia, R., et al., Continuous electrochemical oxidation of biomass derived 5-(hydroxymethyl)furfural into 2,5-furandicarboxylic acid. Journal of Applied Electrochemistry, 2018. 48(6): p. 611-626.
    39. Gao, L.F., et al., Titanium Oxide-Confined Manganese Oxide for One-Step Electrocatalytic Preparation of 2,5-Furandicarboxylic Acid in Acidic Media. Chemelectrochem, 2020. 7(20): p. 4251-4258.
    40. Woo, J., et al., Collaborative Electrochemical Oxidation of the Alcohol andAldehyde Groups of 5-Hydroxymethylfurfural by NiOOH and Cu(OH)2 for Superior 2,5-Furandicarboxylic Acid Production. Acs Catalysis, 2022. 12(7): p. 4078-4091.
    41. Taitt, B.J., D.H. Nam, and K.S. Choi, A Comparative Study of Nickel, Cobalt, and Iron Oxyhydroxide Anodes for the Electrochemical Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Acs Catalysis, 2019. 9(1): p. 660-670.
    42. Li, L.J., et al., Tailoring the facets of Ni3S2 as a bifunctional electrocatalyst for high-performance overall water-splitting. Journal of Materials Chemistry A, 2019. 7(30): p. 18003-18011.
    43. Xu, X.Y., et al., In-situ induced sponge-like NiMoS4 nanosheets on self-supported nickel foam skeleton for electrochemical capacitor electrode. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2020. 602: p. 8.
    44. Su, H., X.Q. Du, and X.S. Zhang, NiCoP coated on NiCo2S4 nanoarrays as electrode materials for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(59): p. 30910-30916.
    45. Zhao, X.Y., et al., Carbon Dots Decorated Hierarchical NiCo2S4/Ni3S2 Composite for Efficient Water Splitting. Acs Sustainable Chemistry & Engineering, 2019. 7(2): p. 2610-2618.
    46. Xu, X.B., et al., Advanced catalysts for hydrogen evolution reaction based on MoS2/NiCo2S4 heterostructures in Alkaline Media. International Journal of Hydrogen Energy, 2020. 45(3): p. 1759-1768.
    47. Wang, J.G., et al., One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016. 306: p. 100-106.
    48. Chen, H.L., P.S. Wu, and J.J. Wu, Binder-Free Metal Sulfide Composite Nanosheet Array Electrodes for Li-Ion Batteries. Acs Sustainable Chemistry & Engineering, 2019. 7(20): p. 17100-17106.
    49. Feng, N., et al., Growth of nanostructured nickel sulfide films on Ni foam as high-performance cathodes for lithium ion batteries. Physical Chemistry Chemical Physics, 2013. 15(24): p. 9924-9930.
    50. Salavati-Niasari, M., F. Davar, and H. Emadi, HIERARCHICAL NANOSTRUCTURED NICKEL SULFIDE ARCHITECTURES THROUGH SIMPLE HYDROTHERMAL METHOD IN THE PRESENCE OF THIOGLYCOLIC ACID. Chalcogenide Letters, 2010. 7(12): p. 647-655.
    51. Zhang, C.L., et al., Electrospun NiCo2S4 with extraordinary electrocatalytic activity as counter electrodes for dye-sensitized solar cells. Journal of Solid State Electrochemistry, 2017. 21(12): p. 3579-3588.
    52. Sivanantham, A., P. Ganesan, and S. Shanmugam, Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Advanced Functional Materials, 2016. 26(26): p. 4661-4672.
    53. Longo, S., et al., Clinical computed tomography and surface-enhanced Raman scattering characterisation of ancient pigments. ACTA IMEKO, 2021. 10: p. 15-22.
    54. Fontana, M.D., K. Ben Mabrouk, and T.H. Kauffmann, Raman spectroscopic sensors for inorganic salts, in Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications, Vol 44, J. Yarwood, R. Douthwaite, and S.B. Duckett, Editors. 2013, Royal Soc Chemistry: Cambridge. p. 40-67.
    55. Rissi, E.N., et al., Pressure-induced crystallization of amorphous red phosphorus. Solid State Communications, 2012. 152(5): p. 390-394.
    56. Peng, B., Y.L. Xu, and F.M. Mulder, Improving the Performance of Si-based Li-Ion Battery Anodes by Utilizing Phospherene Encapsulation. Acta Physico-Chimica Sinica, 2017. 33(11): p. 2127-2132.
    57. Xia, C., et al., Is NiCo2S4 Really a Semiconductor? Chemistry of Materials, 2015. 27(19): p. 6482-6485.
    58. Dychalska, A., et al., Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Materials Science-Poland, 2015. 33(4): p. 799-805.
    59. Yang, F., et al., Facile Synthesis of Well-Dispersed Ni2P on N-Doped Nanomesh Carbon Matrix as a High-Efficiency Electrocatalyst for Alkaline Hydrogen Evolution Reaction. Nanomaterials, 2019. 9(7): p. 12.
    60. Li, M.R., et al., Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Applied Surface Science, 2021. 565: p. 8.
    61. Zhao, Y., et al., Synthesis of nickel phosphide nano-particles in a eutectic mixture for hydrotreating reactions. Journal of Materials Chemistry, 2011. 21(22): p. 8137-8145.
    62. Cecilia, J.A., et al., A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. Journal of Catalysis, 2009. 263(1): p. 4-15.
    63. Tan, Y.W., et al., Three-Dimensional Nanoporous Co9S4P4 Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. Acs Applied Materials & Interfaces, 2019. 11(4): p. 3880-3888.
    64. Wu, X.H., et al., Mechanical synthesis of chemically bonded phosphorus-graphene hybrid as high-temperature lubricating oil additive. Rsc Advances, 2018. 8(9): p. 4595-4603.
    65. Zhang, Y., et al., A Mn-doped Ni2P nanosheet array: an efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017. 53(80): p. 11048-11051.
    66. Xu, X.B., et al., NiCo-LDHs derived NiCo2S4 nanostructure coated by MoS2 nanosheets as high-efficiency bifunctional electrocatalysts for overall water splitting. Surface & Coatings Technology, 2020. 397: p. 8.
    67. Yu, J., et al., Reverse Microemulsion-Assisted Synthesis of NiCo2S4 Nanoflakes Supported on Nickel Foam for Electrochemical Overall Water Splitting. Advanced Materials Interfaces, 2018. 5(7): p. 8.
    68. Sun, H.N., et al., Designing High-Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021. 31(16): p. 44.
    69. Yang, L.T., et al., NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 2018. 392: p. 23-32.
    70. Zhang, B., et al., Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation. Angewandte Chemie-International Edition, 2022. 61(13): p. 9.
    71. Liu, X.J., et al., Synergizing high valence metal sites and amorphous/crystalline interfaces in electrochemical reconstructed CoFeOOH heterostructure enables efficient oxygen evolution reaction. Nano Research, 2022. 15(10): p. 8857-8864.
    72. Lee, K.B., et al., Boosting catalyst activity with high valency metal species through Fe doping on normal spinel NiCr2O4 for superior water oxidation. Applied Surface Science, 2023. 609: p. 7.
    73. Yu, L.H., et al., Effects of catalyst mass loading on electrocatalytic activity: An example of oxygen evolution reaction. Fundamental Research, 2021. 1(4): p. 448-452.
    74. Jin, S., Are Metal Chalcogenides, Nitrides, and Phosphides Oxygen Evolution Catalysts or Bifunctional Catalysts. Acs Energy Letters, 2017. 2(8): p. 1937-1938.
    75. Zhang, X.Y., et al., An overview of the active sites in transition metal electrocatalysts and their for evolution reaction. Chemical Engineering Journal, 2022. 430: p. 18.
    76. Su, H., et al., In Situ Electronic Redistribution Tuning of NiCo2S4 Nanosheets for Enhanced Electrocatalysis. Advanced Functional Materials, 2022. 32(14): p. 12.
    77. Wu, Y.S., et al., Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nature Communications, 2018. 9: p. 9.
    78. Feng, L.L., et al., High-Index Faceted Ni3S2 Nanosheet Arrays as Highly Active and Ultrastable Electrocatalysts for Water Splitting. Journal of the American Chemical Society, 2015. 137(44): p. 14023-14026.
    79. Fleischm.M, et al. (1972). KINETICS AND MECHANISM OF OXIDATION OF AMINES AND ALCOHOLS AT OXIDE-COVERED NICKEL, SILVER, COPPER, AND COBALT ELECTRODES. Journal of the Chemical Society-Perkin Transactions 2(10): 1396-&.
    80. W. Chen, C. Xie, Y. Y. Wang, Y. Q. Zou, C. L. Dong, Y. C. Huang, et al. Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. Chem 2020 Vol. 6 Issue 11 Pages 2974-2993
    81. Jianmin Chen, Yajing Wang, Mingjun Zhou and Yingwei Li, Boosting the electro-oxidation of 5-hydroxymethyl-furfural on a Co–CoSx heterojunction by intensified spin polarization. Chem. Sci., 2022, 13, 4647
    82. Mingjun Zhou,a Jianmin Chen and Yingwei Li, CoP nanorods anchored on Ni2P-NiCoP nanosheets with abundant heterogeneous interfaces boosting the electrocatalytic oxidation of 5-hydroxymethyl-furfural. Catal. Sci. Technol., 2022, 12, 4288
    83. Lifang Gao, Yu Bao, Shiyu Gan, Zhonghui Sun, Zhongqian Song, Dongxue Han, Fenghua Li, and Li Niu, Hierarchical Nickel–Cobalt-Based Transition Metal Oxide Catalysts for the Electrochemical Conversion of Biomass into Valuable Chemicals. ChemSusChem 2018, 11, 2547 – 2553
    84. Xingyu Lu, Kuang-Hsu Wu, Bingsen Zhang, Junnan Chen, Fan Li, Bing-Jian Su, Pengqiang Yan, Jin-Ming Chen, and Wei Qi, Highly Efficient Electro-reforming of 5-Hydroxymethylfurfural on Vertically Oriented Nickel Nanosheet/Carbon Hybrid Catalysts: Structure–Function Relationships. Angew. Chem. Int. Ed. 2021, 60, 14528 – 14535
    85. Mengke Cai, Yawei Zhang, Yiyue Zhao, Qinglin Liu, Yinle Li and Guangqin Li, Two-dimensional metal–organic framework nanosheets for highly efficient electrocatalytic biomass 5-(hydroxymethyl)furfural (HMF)
    Valorization. J. Mater. Chem. A, 2020, 8, 20386
    86. Tao Wu, Orcid, Michael L. Stone, Melinda J. Shearer Orcid, Matthew J. Stolt Orcid, Ilia A. Guzei Orcid, Robert J. Hamers Orcid, Ruifeng Lu Orcid, Kaiming Deng , Song Jin Orcid, and J. R. Schmidt Orcid, Crystallographic Facet Dependence of the Hydrogen Evolution Reaction on CoPS: Theory and Experiments. ACS Catal. 2018, 8, 2, 1143–1152
    87. Peng Xiao, Wei Chen, Xin Wang, A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2015, 5, 1500985
    88. Xin Yao Yu and Xiong Wen (David) Lou, Mixed Metal Sulfides for Electrochemical Energy Storage and Conversion. Adv. Energy Mater.2018, 8, 1701592
    89. Zhang J, Gong W, Yin H, Wang D, Zhang Y, Zhang H, et al. In situ growth of ultrathin Ni(OH)2 nanosheets as catalyst for electrocatalytic oxidation reactions. ChemSusChem. 2021;14(14):2935–42.
    90. Lifang Gao, Zhenbang Liu, Jinling Ma, LijieZhong, Zhongqian Song, Jianan Xu, ShiyuGan, Dongxue Han, Li Niu, NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid. Applied Catalysis B: Environmental Volume 261, February 2020, 118235
    91. Nana Zhang, Yuqin Zou, Li Tao, Wei Chen, Ling Zhou, Zhijuan Liu, Bo Zhou, Gen Huang, Hongzhen Lin, Shuangyin Wang, Electrochemical Oxidationof 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets : Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy. Angewandte Chemie-International Edition 2019 Vol. 58 Issue 44 Pages 15895-15903
    92. Wang W, Kong F, Zhang Z, Yang L, Wang M. Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5 hydroxymethylfurfural to 2,5-furandicarboxylic acid. Dalton Trans. 2021;50(31):10922–27.
    93. Huang X, Song J, Hua M, Xie Z, Liu S, Wu T, et al. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chem. 2020;22(3):843–9.
    94. Kang MJ, Park H, Jegal J, Hwang SY, Kang YS, Cha HG. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl Catal B. 2019;242:85–91.
    95. Bo You, Nan Jiang, Xuan Liu, and Yujie Sun, Simultaneous H2 Generation and Biomass Upgrading in Water by an Efficient Noble-Metal-Free Bifunctional Electrocatalyst. Angew. Chem. Int. Ed. 2016, 55, 9913 –9917
    96. Nan Jiang, Qing Tang, Meili Sheng, Bo You, De-en Jiang and Yujie Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol., 2016,6, 1077-1084
    97. Zhen-Feng Huang, Jiajia Song, Ke Li, Muhammad Tahir, Yu-Tong Wang, Lun Pan, Li Wang, Xiangwen Zhang and Ji-Jun Zou, Hollow Cobalt-Based Bimetallic Sulfide Polyhedra for Efficient All-pH-Value Electrochemical and Photocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2016, 138, 4, 1359–1365
    98. Di-Yan Wang, Ming Gong, Hung-Lung Chou, Chun-Jern Pan, Hsin-An Chen, Yingpeng Wu, Meng-Chang Lin, Mingyun Guan, Jiang Yang, Chun-Wei Chen, Yuh-Lin Wang,§Bing-Joe Hwang, Chia-Chun Chen, and Hongjie Dai, Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets−Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 4, 1587–1592
    99. Xiao-Peng Li, Can Huang, Wen-Kai Han, Ting Ouyang, Zhao-Qing Liu, Transition metal-based electrocatalysts for overall water splitting. Chinese Chemical Letters Volume 32, Issue 9, September 2021, Pages 2597-2616
    100. Czioska, S.; Wang, J.; Teng, X.; Chen, Z. Hierarchically structured CuCo2S4 nanowire arrays as efficient bifunctional electrocatalyst for overall water splitting. ACS Sustain. Chem. Engineer. 2018, 6, 11877– 11883
    101. Wu, K.; Wei, X.; Li, D.; Hu, P. Nitrogen incorporated nickel molybdenum sulfide as efficient electrocatalyst for overall water splitting. J. Mater. Sci. Technol. 2022, 99, 270– 276
    102. Jia LiuOrcid, Jinsong Wang, Bao ZhangOrcid, Yunjun Ruan, Lin Lv, Xiao Ji, Kui Xu, Ling Miao, and Jianjun Jiang, Hierarchical NiCo2S4@NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity. ACS Appl. Mater. Interfaces 2017, 9, 18, 15364–15372
    103. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 Nanowire Arrays Supported on Ni Foam: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions. Adv. Funct. Mater. 2016, 26, 4661– 4672
    104. Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R.; Liu, S.; Zhuang, X.; Feng, X. Interface Engineering of MoS2/Ni3S2 Heterostructures for Highly Enhanced Electrochemical Overall-Water-Splitting Activity. Angew. Chem. 2016, 128, 6814– 6819
    105. R. Li, D. Zhou, J. Luo, W. Xu, J. Li, S. Li, P. Cheng, D. Yuan, The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction. J. Power Sources, 341 (2017), pp. 250-256
    106. C. Zhang, S. Bhoyate, P.K. Kahol, K. Siam, T.P. Poudel, S.R. Mishra, F. Perez, A. Gupta, G. Gupta, R.K. Gupta, Highly efficient and durable electrocatalyst based on nanowires of cobalt sulfide for overall water splitting. ChemNanoMat, 4 (2018), pp. 1240-1246
    107. Na Suo, Zhiyu Dou, Lili Cui, Interface and composition engineering of vanadium doped cobalt nickel sulfide/phosphide heterostructure for efficient water splitting. Electrochimica Acta Volume 368, 1 February 2021, 137602
    108. Kaixun Li, Yun Tong, Dongmei Feng, Pengzuo Chen, Fluorine-anion engineering endows superior bifunctional activity of nickel sulfide/phosphide heterostructure for overall water splitting. Journal of Colloid and Interface Science Volume 625, November 2022, Pages 576-584
    109. A. Muthurasu, V. Maruthapandian, H.Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal., B, 248 (2019), pp. 202-210
    110. Geng Zhang, Yu-Shuo Feng, Wang-Ting Lu, Dan He, Cao-Yu Wang, Yong-Ke Li, Xun-Ying Wang, and Fei-Fei Cao, Enhanced Catalysis of Electrochemical Overall Water Splitting in Alkaline Media by Fe Doping in Ni3S2 Nanosheet Arrays. ACS Catal. 2018, 8, 6, 5431–5441

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE