| 研究生: |
柯雅涓 Ko, Ya-Chuan |
|---|---|
| 論文名稱: |
以第一原理計算帶電本質點缺陷結合庫倫能修正應用於有無鑭摻雜鈦酸鋇之複合缺陷形成能研究 The study of complex defect formation energy of pristine or La-doped BaTiO3 by combining First-principles calculations of intrinsic point defects and Coulomb energy correction |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 鐵電材料 、鈦酸鋇 、第一原理 、點缺陷 |
| 外文關鍵詞: | Ferroelectric materials, barium titanate, first-principles, point defect |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電材料普遍存在各種缺陷,缺陷的存在對鐵電材料的性能及應用產生很大的影響。對於摻雜鑭的鈦酸鋇,通常認為導致其導電性的不同是由於缺陷的存在,本研究以第一原理計算來模擬不同實驗條件下,鈦酸鋇及鈦酸鋇摻雜鑭元素後容易產生的缺陷。本研究將含多種不同缺陷的超晶胞假想成孤立缺陷超晶胞的組合,利用第一原理計算具有孤立缺陷的鈦酸鋇和鈦酸鋇摻雜鑭的缺陷生成能。這種孤立缺陷法需要考慮帶電缺陷會產生的電荷補償,所以計算生成能除了需要計算各個超晶胞的總能和其化學勢能以外,還需要修正電子能帶偏移量以及靜電交互作用,最後將多個孤立缺陷超晶胞結合起來,模擬多種不同缺陷的系統,相較於計算一個含複合缺陷的晶胞需要考慮缺陷間有可能的距離組合,這種方法相較來說更省時,只是這種方法忽略了由於缺陷產生的庫倫力。
對於以孤立缺陷法計算的鈦酸鋇摻雜鑭的缺陷生成能,從結果可知,在氧的化學勢能小於-5.0 eV時,2La∙+VO∙∙+4Ti'具有最低生成能,故其為主導補償機制;在氧的化學勢能介於-5.0 eV和-1.4 eV時,2La∙+2Ti'為主導補償機制;而在氧的化學勢能大於-1.4 eV時,2La∙+VBa"為主導補償機制。本研究透過分析孤立缺陷的點電荷,利用其來計算庫倫力,將得到的庫倫力用來修正孤立缺陷超晶胞組合,並與一個含複合缺陷的晶胞之缺陷生成能來相比較。結果證明這種方法沒辦法將組合缺陷的缺陷生成能修正到和複合缺陷的缺陷生成能相同,雖然利用庫侖能找到的晶體總能與文獻找到的最低能量非常接近,但庫侖能與缺陷距離的趨勢和晶體結構的總能量沒有一定的關聯性,因此這種方法不能用來預測缺陷分佈的能量趨勢變化。
Barium titanate is a perovskite ferroelectric material, and it also has high permittivity. Rare-earth doping could be used to modify the performance of barium titanate. For example, if doping concentration of lanthanum is between 0.3 and 0.5 at%, barium titanate will become the semiconductor and has the positive temperature coefficient of resistance (PTCR) effect. When lanthanum doped barium titanate, the charge compensation effects induced by aliovalent doping. This study investigate the defect compensation mechanism of La-doped BaTiO3 by point defect calculations to build the multi-defect supercell. About the result of this study when μ_O is smaller than -5.0 eV, 2La∙+VO∙∙+4Ti' has lowest defect formation energy; when μO is between -5.0 eV and -1.4 eV, 2La∙+2Ti' has lowest defect formation energy; when μO is larger than -1.4 eV, 2La∙+VBa" has lowest defect formation energy. However, the difference between the linear combination of point defects and the multi-defect supercell is that the former doesn’t include Coulomb energies, so we try to calculate Coulomb energy to decide the distribution of complex defect. The trend of Coulomb energy and the distance of defect distribution has no correlation with the total energy of crystal structure. Only considering Coulomb energy interaction is not enough to predict the complex defect distribution, the calculation of Coulomb energy can’ t be used to predict the change of total energy for the trend of defect distribution.
1. Damjanovic, D., Chapter 4 - Hysteresis in Piezoelectric and Ferroelectric Materials A2 - Bertotti, Giorgio, in The Science of Hysteresis, I.D. Mayergoyz, Editor. 2006, Academic Press: Oxford. p. 337-465.
2. Callister, W.D. and D.G. Rethwisch, Materials Science and Engineering: An Introduction. Seventh ed. 2007, New York: John Wiley & Sons.
3. Lines, M.E. and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials. 2001.
4. Kittel, C., Introduction to Solid State Physics. Eighth ed. 2005: John Wiley & Sons.
5. Morrison, F.D., D.C. Sinclair, and A.R. West, An Alternative Explanation for the Origin of the Resistive Anomaly in La-Doped BaTiO3. Journal of the American Ceramic Society, 2001. 84(2): p. 474-476.
6. Ito, Y. and K. Uchino, Wiley Encyclopedia of Electrical and Electronics Engineering. 2005.
7. BaTiO3 crystal structure, lattice parameters: Datasheet from Landolt-Börnstein - Group III Condensed Matter · Volume 41E: "Ternary Compounds, Organic Semiconductors" in SpringerMaterials (https://dx.doi.org/10.1007/10717201_513), O. Madelung, U. Rössler, and M. Schulz, Editors. 2000, Springer-Verlag Berlin Heidelberg.
8. Fu, D. and M. Itoh, Role of Ca off-centering in tuning the ferroelectric phase transitions in Ba (Zr, Ti) O3 system. arXiv preprint arXiv:1503.00406, 2015.
9. Huybrechts, B., K. Ishizaki, and M. Takata, The positive temperature coefficient of resistivity in barium titanate. Journal of materials science, 1995. 30(10): p. 2463-2474.
10. Yang, G.Y., et al., Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II—insulation resistance degradation under applied dc bias. Journal of Applied Physics, 2004. 96(12): p. 7500-7508.
11. Waser, R., T. Baiatu, and K.H. Härdtl, Degradation of dielectric ceramics. Materials Science and Engineering: A, 1989. 109: p. 171-182.
12. Polotai, A.V., et al., Effect of Heating Rates during Sintering on the Electrical Properties of Ultra‐Thin Ni–BaTiO3 Multilayer Ceramic Capacitors. Journal of the American Ceramic Society, 2008. 91(8): p. 2540-2544.
13. Sakabe, Y., et al., Effects of Rare-Earth Oxides on the Reliability of X7R Dielectrics. Japanese Journal of Applied Physics, 2002. 41(Part 1, No. 9): p. 5668-5673.
14. Vijatović, M.M., et al., Properties of lanthanum doped BaTiO3 produced from nanopowders. Ceramics International, 2010. 36(6): p. 1817-1824.
15. Morrison, F.D., D.C. Sinclair, and A.R. West, Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. Journal of Applied Physics, 1999. 86(11): p. 6355-6366.
16. Tsur, Y., T.D. Dunbar, and C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. Journal of electroceramics, 2001. 7(1): p. 25-34.
17. Cao, W., Defects in Ferroelectrics, in Disorder and Strain-Induced Complexity in Functional Materials, T. Kakeshita, et al., Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 113-134.
18. Alahmed, Z. and H. Fu, First-principles determination of chemical potentials and vacancy formation energies in PbTiO3 and BaTiO3. Physical Review B, 2007. 76(22).
19. Raeliarijaona, A. and H. Fu, Persistence of strong and switchable ferroelectricity despite vacancies. Scientific reports, 2017. 7: p. 41301.
20. Moriwake, H., C.A. Fisher, and A. Kuwabara, First-principles calculations of rare-earth dopants in BaTiO3. Japanese Journal of Applied Physics, 2009. 48(9S1): p. 09KC03.
21. Makovec, D. and M. Drofenik, Microstructural Changes during the Reduction/Reoxidation Process in Donor‐Doped BaTiO3 Ceramics. Journal of the American Ceramic Society, 2000. 83(10): p. 2593-2599.
22. Lin, M.-H. and H.-Y. Lu, Densification retardation in the sintering of La2O3-doped barium titanate ceramic. Materials Science and Engineering: A, 2002. 323(1): p. 167-176.
23. Lee, S., C.A. Randall, and Z.K. Liu, Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate. Journal of the American Ceramic Society, 2007. 90(8): p. 2589-2594.
24. Dawson, J., et al., First-principles study of intrinsic point defects in hexagonal barium titanate. Journal of Applied Physics, 2012. 111(9): p. 094108.
25. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
26. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B, 1996. 54(16): p. 11169.
27. Kresse, G. and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science, 1996. 6(1): p. 15-50.
28. Thomas, L.H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society, 1927. 23(5): p. 542-548.
29. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
30. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
31. Sun, W., Heavy Metal Compounds and Hydrogen Storage Materials from Ab Initio Calculations. 2013, KTH Royal Institute of Technology.
32. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
33. Gkeka, P., Molecular dynamics studies of peptide-membrane interactions: insights from coarse-grained models. 2010.
34. Schwabl, F., Advanced quantum mechanics. 2005: Springer Science & Business Media.
35. Kolter, Z., Linear Algebra Review and Reference. Available online: http, 2008.
36. Togo, A. and I. Tanaka, First principles phonon calculations in materials science. Scripta Materialia, 2015. 108: p. 1-5.
37. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 1987: Clarendon Press. 385.
38. Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19.
39. Lin, S.-k., et al., Ab initio energetics of charge compensating point defects: A case study on MgO. Computational Materials Science, 2013. 73: p. 41-55.
40. Naik, M.H. and M. Jain, CoFFEE: Corrections For Formation Energy and Eigenvalues for charged defect simulations. Computer Physics Communications, 2018. 226: p. 114-126.
41. Ge, F.-F., et al., The Structure and Defect Formation Energy in Tetragonal PbTiO3: Ab Initio Calculation. Ferroelectrics, 2010. 401(1): p. 154-160.
42. Kresse, G., M. Marsman, and J. Furthmuller, VASP the guide. Computational Materials Physics, Faculty of Physics. Austria: Universitat Wien, 2016.
43. Freysoldt, C., J. Neugebauer, and C.G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations. Physical review letters, 2009. 102(1): p. 016402.
44. Van de Walle, C.G. and J. Neugebauer, First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of applied physics, 2004. 95(8): p. 3851-3879.
45. Levine, B.G., J.E. Stone, and A. Kohlmeyer, Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units-Radial Distribution Function Histogramming. J Comput Phys, 2011. 230(9): p. 3556-3569.
46. Wen, X., et al., First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2). Physica B: Condensed Matter, 2017. 525: p. 119-126.
47. Li, L., Y. Li, and X. Zhao, Interaction between Bi Dopants and Intrinsic Defects in LiNbO3 from Local and Hybrid Density Functional Theory Calculations. Inorganic chemistry, 2019. 58(6): p. 3661-3669.
48. Freysoldt, C., et al., First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014. 86(1): p. 253-305.
49. Liu, B., et al., Composition dependent intrinsic defect structures in SrTiO 3. Physical Chemistry Chemical Physics, 2014. 16(29): p. 15590-15596.
50. Kwei, G.H., et al., Structures of the ferroelectric phases of barium titanate. The Journal of Physical Chemistry, 1993. 97(10): p. 2368-2377.
51. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+Ucalculations. Physical Review B, 2011. 84(4).
52. Finnis, M., A. Lozovoi, and A. Alavi, The oxidation of NiAl: What can we learn from ab initio calculations? Annu. Rev. Mater. Res., 2005. 35: p. 167-207.
53. 邱韋中(2017)。以第一原理計算探討鈦酸鋇摻雜鑭之缺陷生成能及其機制。國立成功大學材料科學及工程學系碩士論文,台南市。
校內:2024-09-06公開