| 研究生: |
曾怡鈞 Tseng, Yi-Chun |
|---|---|
| 論文名稱: |
數位光學與光纖微透鏡陣列應用於中空滾筒內表面之黃光微影製程 Digital Light Processing and Optical Fiber Arrays Applied for Photolithography on the Inner Surface of Hollow Cylinder |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 數位光學 、光纖陣列 、球面鏡微透鏡陣列 、曲面光阻塗佈技術 、光點補償技術 、中空滾筒模仁 、導光板結構 、無接縫滾印模具 |
| 外文關鍵詞: | Digital Light Processing, Fiber Array, Aspherical Lens Arrays, Spherical Lens Arrays, Curved Photoresist Spray Coating, Spot Compensation, Hollow Roller Mold, Arbitrary Pattern Circuit, Light Plate Guide, Seamless Thin Film |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文建置一套適用於中空滾筒內曲面的無光罩式曝光系統,透過此系統可在塗佈於滾筒內表面上的光阻層進行無光罩式曝光,最後經由光阻的顯影過程,得到大面積、無接縫、與任意複雜圖形的二維或三維的光阻結構。根據此一建置於中空滾筒內曲面的光阻結構,利用翻模的方式,即可完成一滾帶式的滾印模具,應用於連續滾印的微結構製程。
此一滾筒內曲面無光罩式曝光系統結合了六大關鍵項目:數位光學處理系統 (Digital Light Processing, DLP)、光纖陣列、球面及非球面微透鏡陣列、曲面光阻噴塗技術、光點補償演算法、顯影系統。首先,數位光學投影是利用數位微反射鏡面裝置 (Digital Micromirror Device, DMD),將波長405 nm紫外光投影至16 × 12的球面微透鏡與光纖陣列,微透鏡可將DMD所反射的紫外光有效地耦合進入光纖,之後將二維光纖陣列所收到的能量傳遞至重新排列的一維光纖陣列;藉由光纖的可任意排列特性,將二維光纖陣列中能量過小的光纖排除,最後保留能量較高的120根光纖,並以1 mm的光纖間距,得到曝光幅寬為120 mm 的一維光纖陣列;接著,在一維光纖出口端製作非球面微透鏡,目的為將光纖出口的UV光聚焦成約8-10 μm大小的UV光點,最後藉由DMD控制一維陣列中每一個光點的亮暗,再配合一維陣列的位移與滾筒的轉動,即可對塗佈於中空滾筒內表面的光阻層進行無光罩式的曝光,在滾筒表面定義出任意二維或三維的結構圖形。
為了增加滾筒模仁上結構的完整性,光點補償演算法彌補了一維光點陣列在製作過程中所累積的誤差,利用MATLAB程式將光點補償邏輯引入拆圖程式,將圖形二值化後的檔案依照曝光邏輯進行拆圖,配合運動控制卡在運動過程中送出的同步觸發訊號進行翻圖曝光。本研究結合上述光學系統與拆圖補償邏輯,最終再搭配高精度位移平台、精密旋轉機構與程式控制,在直徑21公分、長度21公分之金屬滾筒模仁內曝出大面積的二維與三維任意圖形的微結構。為了得到穩定的光阻結構,每次所使用的顯影參數必須固定,因此本研究也設計了一套顯影系統,利用可調速馬達、軸承支撐機構,提供可靠的顯影品質,最後經由PDMS將滾筒內部的光阻結構翻製出一個無接縫的滾帶式滾印模具。
This thesis develops a mask-less ultraviolet (UV) light exposure system for UV patterning a photo-resist (PR) coated on the inner surface of a hollow cylinder. After PR developing processes, we can then obtain seamless PR microstructures with arbitrary patterns over large patterning area. The surface profiles of fabricated PR microstructures are then replicated by molding processes onto the outer surface of a belt mold which can be applied for continuous roller imprinting. This thesis also dedicates to improve the exposure energy of the whole system to increase its throughput.
The developed UV exposure system consists of six key components: digital light processing system (DLP)、fiber array、spherical and aspherical micro-lens array、curved photoresist spray coating、spot compensation algorithm, and development system. The curved spray coating system is used to uniformly coat a thin PR layer onto the inner surface of hollow cylinder. The development system provides a stable environment during the developing stage. The DLP exposure system consists of a digital mirror device (DMD) which reflects UV light to a two-dimensional (2D) ball-lens array. An array of optical fibers beneath the ball-lens array collect and transfer the UV light. These fibers are re-arranged and placed into a one-dimensional (1D) array and each fiber is aligned with a micro-lens to focus the out-coming UV light into a small UV spot. By aligning this 1D UV spots onto the photoresist (PR) layer coated on the inner surface of hollow cylinder, one can achieve arbitrary UV patterns by synchronizing the DMD operation, the 1D UV spots translation, and the rotation of roller mold.
To achieve complete and accurate UV patterning on inner surface of hollow cylinder, a MATLAB program is developed which can compensate the position errors of projected UV spots by adjusting the disassemble algorithm for generating DMD patterns. Based on experiment results, it shows this system can successfully get the smallest linewidth of 9 μm、an increment of linewidth of 2.5 μm, over the inner cylindrical surface with a total length of 120 mm. Finally, the microstructures of photoresist patterns are replicated to a PDMS belt mold with continuous and seamless microstructures on its outer cylindrical surface for subsequent roller imprinting processes.
[1]. S. H. Ahn, & L. J. Guo. (2008). High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates. Advanced Materials. 20, 2044-2049.
[2]. S. H. Ahn, & L. J. Guo. (2009). Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting. ACS Nano. 3(8), 2304-2310.
[3]. C. H. Chuang, S. W. Tsai, J. F. Lin, & C. P. Chen. (2011). Fabrication of Multi-Function Optical Films by Using A Ultraviolet Curing Roll-to-Roll System. Applied Physics. 50.
[4]. L. P. Yeo, S. H. Ng, H. M. Xia, Z. P. Wang, V. S. Thang, Z. W. Zhong, & N. F. de Rooij. (2010). Investigation of hot roller embossing for microfluidic devices. Micromechanics and Microengineering. 20, 015017 (10 pp.).
[5]. T. H. Chou, K. Y. Cheng, C. W. Hsieh, & Y. Takaya. (2012). Roll-to-roll fabrication of a low-reflectance transparent conducting oxide film with subwavelength structure. Micromechanics and Microengineering. 22, 045009 (7 pp.).
[6]. H. Tan, A. Gilbertson, & S. Y. Chou. (1998). Roller nanoimprint lithography. Journal of Vacuum Science & Technology. 16, 3926-3928.
[7]. N. Ishizawa, K. Idei, T. Himura, D. Noda, & T. Hattori. (2008). Resin micromachining by roller hot embossing. Microsystem Technologies. 14, 1381-1388.
[8]. S. Y. Yang, F. S. Cheng, S. W. Xu, P. H. Huang, & T. C. Huang. (2008). Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform. Microelectronic Engineering. 85, 603-609.
[9]. S. J. Liu, & Y. C. Chang, (2006). A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glass substrates. Journal of Micromechanics and Microengineering. 17, 172.
[10]. http://www.adtek-precision.com/product_02.php?id=3&sid=2,ADTEK,亞德科超精密有限公司,光學膜滾輪雕刻機。
[11]. T. Katoha, N. Nishib, M. Fukagawab, H. Uenob, & S. Sugiyamab. (2001). Direct writing for three-dimensional microfabrication using synchrotron radiation etching. Sensors and Actuators A. 89, 10-15.
[12]. W. Wang, X. Mei, & G. Jiang, (2009). Control of microstructure shape and morphology in femtosecond laser ablation of imprint rollers. The International Journal of Advanced Manufacturing Technology. 41, 504-512.
[13]. L. T. Jiang, T. C. Huang, C. Y. Chang, J. R. Ciou, S. Y. Yang, & P. H. Huang. (2008). Direct fabrication of rigid microstructures on a metallic roller using a dry film resist. Journal of Micromechanics and Microengineering. 18, 015004, (6 pp.).
[14]. 陳泓瑋,「旋轉步階式曲面黃光微影技術製程應用於製作無縫滾輪模仁與微透鏡陣列光學膜」,國立成功大學航空太空工程系碩士班碩士論文。
[15]. 溫宗倫,「曲面光束筆暨旋轉步階式微影技術應用於無縫滾筒模仁之製作」,國立成功大學機械工程學系碩士班碩士論文。
[16]. 楊善,「高精度數位光學與光纖微透鏡陣列之滾筒模仁製程技術」,國立成功大學機械工程學系碩士班碩士論文。
[17]. J. D. Li, P. Zhang, Y. H. Wu, Y. S. Liu, & M. Xuan. (2009). Uniformity study of nickel thin film microstructure deposited by electroplating. Microsystem Technologies, 15, 505-510.
[18]. https://www.ti.com/product/DLP7000?keyMatch=DLP7000&tisearch=search-everything&usecase=GPN,Texas Instruments,德州儀器公司DMD型號DLP-7000 (XGA)。
[19]. https://www.wintechdigital.com/W4100?search=w4100,Wintech,北京聞亭泰科技發展有限公司,DMD控制面板型號W4100。
[20]. 邱繼正,「準分子雷射微細加工系統建構及微透鏡陣列之製作與應用」,國立成功大學機械工程學系博士班博士論文。
[21]. K. Zimmer, D. Hirsch, & F. Bigl. (1995). Excimer laser machining for fabrication of analogous microstructures. Applied Surface Science. 96-98, 425-429.
[22]. 阮黃智,「光學機械系統應用於中空滾筒內表面之紫外光光刻技術」,國立成功大學機械工程學系碩士班碩士論文。
校內:2026-09-13公開