簡易檢索 / 詳目顯示

研究生: 王俊傑
Wang, Jun-Chieh
論文名稱: 相對論電磁離子迴旋不穩定性中之不穩定性轉變及Alfvénic行為
Instability transition and Alfvénic behavior in relativistic electromagnetic ion cyclotron instability
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 43
外文關鍵詞: relativistic electromagnetic ion cyclotron insta, plasma, Lorentz factor, Alfvénic behavior, instability transition
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • none

     The relativistic instabilities of electromagnetic ion cyclotron waves driven by
    MeV ions are studied analytically and numerically. The instabilities are reactive
    and come from the coupling of slow ions’ first-order pole and fast ions’ second-order
    pole of the dielectric function. This essential extra mechanism is due to relativistic
    effect. Owing to the wave magnetic field, novel characteristics such as Alfv´enic
    behavior and instability transition are discovered and illuminated in detail. The
    wave magnetic field contributes to the nonresonant plasma dielectric which affects
    the instability conditions and scaling laws. A negative harmonic cyclotron frequency
    mismatch between the fast and slow ions is required for driving a cubic (and a coupled
    quadratic) instability; the cube (square) root scaling of the peak growth rate makes
    the relativistic effect more important than classical mechanism, especially for low
    fast ion density and Lorentz factor being close to unity. For the cubic instability,
    there is a threshold (ceiling) on the slow ion temperature and density (the external
    magnetic field and the fast ion energy); the Alfv´en velocity is required to be low.
    This Alfv´enic behavior is interesting in physics and important for its applications.
    The case of fast protons in thermal deuterons is numerically studied and compared
    with the analytical results. When the slow ion temperature or density (the
    external magnetic field or the fast ion energy) is increased (reduced) to about twice
    (half) the threshold (ceiling), the same growth rate peak transits from the cubic
    instability to the coupled quadratic instability and a new cubic instability branch
    appears. The instability transition is an interesting new phenomenon for instability.

    Contents 1 Introduction 9 2 Dispersion relation from relativistic kinetic theory 12 3 Cyclotron instability analysis for one fast ion species 15 3.1 Cubic instability 18 3.2 Coupled quadratic instability 21 3.3 Decoupled quadratic instability 23 4 Numerical studies 25 4.1 Typical plasma parameters 26 4.2 Slow ion temperature 29 4.3 Slow ion density 32 4.4 Magnetic field 35 4.5 Fast ion density 38 5 Conclusion 39

    [1] K. R. Chu, Rev. Mod. Phys. 76, 489 (2004).
    [2] K. R. Chen, J. M. Dawson, A. T. Lin, and T. Katsouleas, Phys. Fluids B 3, 1270
    (1991).
    [3] T. H. Stix, Waves in Plasmas (American Institute of Physics, Woodbury, New York,
    1992).
    [4] D. E. Baldwin, I. B. Bernstein, and M. P. H. Weenik, Advances in Plasma Physics 3,
    18 (1969).
    [5] K. R. Chen and K. R. Chu, IEEE Trans. Microwave Theory Tech. 34, 72 (1986).
    [6] K. R. Chu, in Wave Heating and Current Drive in Plasmas, edited by V. L. Granatstein
    and P. L. Colestock (Gordon and Breach, New York, 1985), Chap. 7.
    [7] Application of High Power Microwaves, edited by A. V. Gaponov-Grekhov and V. L.
    Granatstein (Artech House, Boston, MA, 1994).
    [8] N. J. Fisch, Rev. Mod. Phys. 59, 175 (1987).
    [9] N. J. Fisch and J. M. Rax, Nucl. Fus. 32, 549 (1992).
    [10] N. J. Fisch, Plasma Phys. Control. Fus. 35, A91 (1993).
    [11] I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed. (Cambridge University
    Press, New York, 2002).
    [12] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum
    Press, New York, 1983), Vol. 1.
    [13] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (San Francisco Press,
    San Francisco, 1986), p. 409, 450.
    [14] R. Geller, Electron Cyclotron Resonance Ion Source and ECR Plasmas (Institute of
    Physics Publishing, London, 1996), p. 236.
    [15] C. S. Wu and L. C. Lee, Astrophys. J. 230, 621 (1979).
    [16] D. B. Melrose, Instabilities in Space and Laboratory Plasmas (Cambridge University
    Press, London, 1986).
    [17] T. Tajima and K. Shibata, Plasma Astrophysics (Addison-Wesley, Reading-
    Massachusetts, 1997).
    [18] R. Q. Twiss, Australian J. Phys. 11, 564 (1958).
    [19] J. Schneider, Phys. Rev. Lett. 2, 504 (1959).
    [20] A. V. Gaponov-Grekhov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 2, 450, 836 (1959).
    [21] V. V. Zheleznyakov, Izv. Vyzov Radophysika 3, N1, 57 (1960).
    [22] R. A. Blanken, T. H. Stix, and A. F. Kuckes, Phys. Plasmas 11, 945 (1969).
    [23] K. R. Chen, Phys. Lett. A 181, 308 (1993).
    [24] K. R. Chen, W. Horton, and J. W. van Dam, Phys. Plasmas 1, 1195 (1994).
    [25] K. R. Chen, Phys. Rev. Lett. 72, 3534 (1994).
    [26] K. R. Chen, Nucl. Fus. 35, 1769 (1995).
    [27] K. R. Chen, Phys. Lett. A 247, 319 (1998).
    [28] K. R. Chen, Phys. Plasmas 7, 844 (2000), ibid, 857(2000).
    [29] K. R. Chen, Phys. Plasmas 10, 1315 (2003).
    [30] K. R. Chen, Phys. Lett. A 326, 417 (2004).
    [31] H. P. Furth, R. J. Goldston, S. J. Zweben, and D. J. Sigmar, Nucl. Fus. 30, 1799
    (1990).
    [32] N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 612 (1992).
    [33] R. J. Hawryluk, Rev. Mod. Phys. 70, 537 (1998).
    [34] G. A. Cottrell and R. O. Dendy, Phys. Rev. Lett. 60, 33 (1988).
    [35] J. Team, Nucl. Fus. 32, 187 (1992).
    [36] G. A. Cottrell, V. P. Bhatnagar, and O. da Costa, Nucl. Fus. 33, 1365 (1993).
    [37] S. Cauffman, R. Majeski, K. G. McClements, and R. O. Dendy, Nucl. Fus. 35, 1597
    (1995).
    [38] K. G. McClements, C. Hunt, R. O. Dendy, and G. A. Cottrell, Phys. Rev. Lett. 82,
    2099 (1999).
    [39] B. Coppi, Phys. Lett. A 172, 439 (1993).
    [40] N. N. Gorelenkov and C. Z. Cheng, Phys. Plasmas 2, 1961 (1995).
    [41] R. O. Dendy, C. N. Lashmore-Davies, and K. F. Kam, Phys. Fluids B 4, 3996 (1992).
    [42] K. G. McClements et al., Phys. Plasmas 3, 543 (1996).
    [43] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers
    (Dover Publications, New York, 1968), p. 23.

    下載圖示 校內:立即公開
    校外:2005-06-03公開
    QR CODE