| 研究生: |
王俊傑 Wang, Jun-Chieh |
|---|---|
| 論文名稱: |
相對論電磁離子迴旋不穩定性中之不穩定性轉變及Alfvénic行為 Instability transition and Alfvénic behavior in relativistic electromagnetic ion cyclotron instability |
| 指導教授: |
陳寬任
Chen, Kuan-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 外文關鍵詞: | relativistic electromagnetic ion cyclotron insta, plasma, Lorentz factor, Alfvénic behavior, instability transition |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
none
The relativistic instabilities of electromagnetic ion cyclotron waves driven by
MeV ions are studied analytically and numerically. The instabilities are reactive
and come from the coupling of slow ions’ first-order pole and fast ions’ second-order
pole of the dielectric function. This essential extra mechanism is due to relativistic
effect. Owing to the wave magnetic field, novel characteristics such as Alfv´enic
behavior and instability transition are discovered and illuminated in detail. The
wave magnetic field contributes to the nonresonant plasma dielectric which affects
the instability conditions and scaling laws. A negative harmonic cyclotron frequency
mismatch between the fast and slow ions is required for driving a cubic (and a coupled
quadratic) instability; the cube (square) root scaling of the peak growth rate makes
the relativistic effect more important than classical mechanism, especially for low
fast ion density and Lorentz factor being close to unity. For the cubic instability,
there is a threshold (ceiling) on the slow ion temperature and density (the external
magnetic field and the fast ion energy); the Alfv´en velocity is required to be low.
This Alfv´enic behavior is interesting in physics and important for its applications.
The case of fast protons in thermal deuterons is numerically studied and compared
with the analytical results. When the slow ion temperature or density (the
external magnetic field or the fast ion energy) is increased (reduced) to about twice
(half) the threshold (ceiling), the same growth rate peak transits from the cubic
instability to the coupled quadratic instability and a new cubic instability branch
appears. The instability transition is an interesting new phenomenon for instability.
[1] K. R. Chu, Rev. Mod. Phys. 76, 489 (2004).
[2] K. R. Chen, J. M. Dawson, A. T. Lin, and T. Katsouleas, Phys. Fluids B 3, 1270
(1991).
[3] T. H. Stix, Waves in Plasmas (American Institute of Physics, Woodbury, New York,
1992).
[4] D. E. Baldwin, I. B. Bernstein, and M. P. H. Weenik, Advances in Plasma Physics 3,
18 (1969).
[5] K. R. Chen and K. R. Chu, IEEE Trans. Microwave Theory Tech. 34, 72 (1986).
[6] K. R. Chu, in Wave Heating and Current Drive in Plasmas, edited by V. L. Granatstein
and P. L. Colestock (Gordon and Breach, New York, 1985), Chap. 7.
[7] Application of High Power Microwaves, edited by A. V. Gaponov-Grekhov and V. L.
Granatstein (Artech House, Boston, MA, 1994).
[8] N. J. Fisch, Rev. Mod. Phys. 59, 175 (1987).
[9] N. J. Fisch and J. M. Rax, Nucl. Fus. 32, 549 (1992).
[10] N. J. Fisch, Plasma Phys. Control. Fus. 35, A91 (1993).
[11] I. H. Hutchinson, Principles of Plasma Diagnostics, 2nd ed. (Cambridge University
Press, New York, 2002).
[12] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum
Press, New York, 1983), Vol. 1.
[13] N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics (San Francisco Press,
San Francisco, 1986), p. 409, 450.
[14] R. Geller, Electron Cyclotron Resonance Ion Source and ECR Plasmas (Institute of
Physics Publishing, London, 1996), p. 236.
[15] C. S. Wu and L. C. Lee, Astrophys. J. 230, 621 (1979).
[16] D. B. Melrose, Instabilities in Space and Laboratory Plasmas (Cambridge University
Press, London, 1986).
[17] T. Tajima and K. Shibata, Plasma Astrophysics (Addison-Wesley, Reading-
Massachusetts, 1997).
[18] R. Q. Twiss, Australian J. Phys. 11, 564 (1958).
[19] J. Schneider, Phys. Rev. Lett. 2, 504 (1959).
[20] A. V. Gaponov-Grekhov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 2, 450, 836 (1959).
[21] V. V. Zheleznyakov, Izv. Vyzov Radophysika 3, N1, 57 (1960).
[22] R. A. Blanken, T. H. Stix, and A. F. Kuckes, Phys. Plasmas 11, 945 (1969).
[23] K. R. Chen, Phys. Lett. A 181, 308 (1993).
[24] K. R. Chen, W. Horton, and J. W. van Dam, Phys. Plasmas 1, 1195 (1994).
[25] K. R. Chen, Phys. Rev. Lett. 72, 3534 (1994).
[26] K. R. Chen, Nucl. Fus. 35, 1769 (1995).
[27] K. R. Chen, Phys. Lett. A 247, 319 (1998).
[28] K. R. Chen, Phys. Plasmas 7, 844 (2000), ibid, 857(2000).
[29] K. R. Chen, Phys. Plasmas 10, 1315 (2003).
[30] K. R. Chen, Phys. Lett. A 326, 417 (2004).
[31] H. P. Furth, R. J. Goldston, S. J. Zweben, and D. J. Sigmar, Nucl. Fus. 30, 1799
(1990).
[32] N. J. Fisch and J. M. Rax, Phys. Rev. Lett. 69, 612 (1992).
[33] R. J. Hawryluk, Rev. Mod. Phys. 70, 537 (1998).
[34] G. A. Cottrell and R. O. Dendy, Phys. Rev. Lett. 60, 33 (1988).
[35] J. Team, Nucl. Fus. 32, 187 (1992).
[36] G. A. Cottrell, V. P. Bhatnagar, and O. da Costa, Nucl. Fus. 33, 1365 (1993).
[37] S. Cauffman, R. Majeski, K. G. McClements, and R. O. Dendy, Nucl. Fus. 35, 1597
(1995).
[38] K. G. McClements, C. Hunt, R. O. Dendy, and G. A. Cottrell, Phys. Rev. Lett. 82,
2099 (1999).
[39] B. Coppi, Phys. Lett. A 172, 439 (1993).
[40] N. N. Gorelenkov and C. Z. Cheng, Phys. Plasmas 2, 1961 (1995).
[41] R. O. Dendy, C. N. Lashmore-Davies, and K. F. Kam, Phys. Fluids B 4, 3996 (1992).
[42] K. G. McClements et al., Phys. Plasmas 3, 543 (1996).
[43] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers
(Dover Publications, New York, 1968), p. 23.