| 研究生: |
范安婕 Fuente, Thalia de la |
|---|---|
| 論文名稱: |
相思樹木材焙燒之研究 A Study on Torrefaction of Acacia Confusa hard wood |
| 指導教授: |
李文智
Lee, Wen-Jhy |
| 共同指導教授: |
陳維新
Chen, Wei-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 非氧化及氧化焙燒 、能源產量及能量與質量與質量共效益指標 、高解析掃描式電子顯微鏡 、熱重分析 、動力模式 |
| 外文關鍵詞: | Non-oxidative torrefaction and oxidative torrefaction, energy-mass co-benefit index (EMCI), HR-SEM, HRGC/HRMS, thermogravimetry analysis, kinetic model |
| 相關次數: | 點閱:99 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
焙燒係一種溫和裂解之程序,其乃將生質物放置於惰性或氮氣環境下,以200 ~ 300°C之操作溫度加熱,以改進生質物性質。在本研究中以相思樹添加NOE-7F在氧化及非氧化條件下以240至320°C焙燒。再添加酵素(NOE-7F)與相思木共同焙燒探討其影響機制。固體產量、增強因數(HHV)、能源產量及能量與質量共效益指標(EMCI)用以計算最終的固體產物,以得到最佳生物質燃料焙燒結果。再以熱重分析法(TGA)、導數熱重分析(DTG)、高解析度場發射掃描電子顯微鏡(HR-SEM),及高解析氣相層析儀與高解析質譜儀(HRGC/HRMS)分析焙燒程序後之產物。在氧化及非氧化條件下隨著焙燒溫度增加,會降低H/C 及 O/C 比值,而在氧化條件下其降低之H/C 及 O/C 比值較和緩。相思木在加入NOE-7F後,隨著焙燒溫度增加,其H/C 及 O/C 比值降低得更均勻。
結果顯示,在氧化條件下及添加酵素之產量為43.1% 、在氧化條件下及無添加酵素之產量為41.3%、在非氧化的條件及添加酵素之產量為45.8%和非氧化的條件及無添加酵素之產量為44% ;增加焙燒溫度可獲得較少的固體產量而添加酵素後可增加其固體產量。增強因數(HHV)會隨溫度增加而增加,未焙燒之相思木在300°C發生輕微的轉折。非氧化和氧化條條件下,HHV的增強因子分別是1.6及1.4。在氧化條件下,未焙燒之相思木其EMCI在300°C達最大值26.9,而焙燒後之相思木其EMCI在280°C達最大值22.4。
HR-SEM影像顯示,由於有機酵素NOE-7F以及光滑壁上更多筒狀結構的存在,使得在氧化條件下纖維素熱降解情況更加明顯。且由熱重分析顯示在非氧化條件下,NOE-7F的添加對半纖維素和纖維素的降解有最小之影響,但在氧化條件下,此情形卻發生在325°C的較低溫度,而不是350°C。另外,藉由HRGC/HRMS 分析,液相的成分為酚、2-甲氧基苯、4-甲基苯酚、2,6-二甲氧基酚、2-甲氧基-4-甲基苯酚、4-乙基-2-甲氧基苯酚、1,2,3-三甲氧基苯、愈創木酚、糠醛、3,4,5-三甲氧基甲苯、4-羥基-3-甲氧基苯基丙酮、1, 2-苯二酚和8-壬烯酸。
動力分析能得知相思樹的非等溫焙燒為擬一階反應動力常數。添加NOE-7E以後,在有無氧化情況下,分解半纖維素的活化能各減少9.6%及10.5%;而分解纖維素的活化能各減少3.1%及4.4%。由此得知,NOE-7F的添加能夠使分解活化能減少,尤其是在非氧化狀況下更為顯著。
A. Confusa hardwood, which is available locally in Taiwan, was torrefied under oxidative and non- oxidative conditions at varying temperatures from 240 to 320°C. Also, the wood was treated with bio-solution, NOE-7F, and the effects were analyzed. Solid yield, enhancement factor of HHV, energy yield and energy- mass- co-benefit index (EMCI) of the final solid products were calculated to better characterize the biomass torrefaction. Thermogravimetry analysis and derivative thermogravimetry analysis (TGA & DTG), high resolution scanning electron microscope (HR-SEM), and high resolution gas chromatography/ high resolution mass spectrometry (HRGC/HRMS) analyze the products of the torrefaction process.
Weight and atomic ratios of H/C and O/C ratios were shown to decrease with increasing temperatures under both oxidative and non- oxidative atmospheres, moderately less in oxidative atmospheres. The addition of the NOE-7F lowered H/C and O/C ratios more uniformly. A lower solid yield was obtained with increasing temperature under oxidative and non-oxidative conditions. For the addition of the bio-solution, it decreased by 43.1% and 41.3% and in the absence of bio-solution by 45.8% and 44%, respectively. The enhancement factor of HHV increased with increasing temperature, with slight inflection point occurring at 300°C for untreated hardwood. The enhancement factor of HHV was 1.6 and 1.4 for non-oxidative and oxidative atmospheres, respectively. Under oxidative condition, the EMCI for untreated hardwood was highest (26.9) at 300°C and for treated hardwood was at (22.4) at 280°C.
HR-SEM images captured at the highest (320°C) and lowest (240°C) temperatures showed a more pronounced thermal degradation under oxidative conditions exhibited by the presence of more tubular shape structures with smoother walls, in the presence of NOE-7F. Results of thermogravimetry analysis showed that the decomposition of cellulose lowers from 0.757 wt%/°C (360 °C) to 0.67 wt%/°C (342 °C) in the presence of bio-solution, under non-oxidative and oxidative conditions, respectively. Compounds detected in the liquid fraction via HRGC/HRMS analysis were phenol (1), 2-methoxyphenol (2), 4-methylphenol (3), 2,6-dimethoxyphenol (4), 2-methoxy-4-methylphenol (5), 4-ethyl-2-methoxyphenol (6), 1,2,3-trimethoxybenzene (7), Guaiacol (8), Furfural (9), 3,4,5 Trimethoxytoluene (10), 4-hydroxy-3-methoxyphenyl acetone (11), 1,2 benzenediol (12) and 8-Nonenoic acid(13).
The kinetic analysis identified the non-isothermal torrefaction of A. Confusa hardwood to be pseudo -first order. When considering the addition of NOE-7F, the activation energy for decomposition of hemicellulose was decreased by 9.6% and 10.5% for non-oxidative and oxidative atmospheres, respectively. On the other hand, the activation energy for decomposition of cellulose was decreased by 3.1% and 4.4% for non-oxidative and oxidative atmospheres, respectively. This shows that addition of NOE-7F results in lower activation energy, especially for non-oxidative conditions.
Alderliesten, P. (1990). Systeemstudie Hoge Temperatuur Gasreiniging Bij Kv-Steg Systemen, ECN/KEMA/TNO-M&E/TU Delft, report ref.
Almeida, G., Brito, J. and Perré, P. (2010). Alterations in Energy Properties of Eucalyptus Wood and Bark Subjected to Torrefaction: The Potential of Mass Loss as a Synthetic Indicator. Bioresource technology 101: 9778-9784.
Arias, B., Pevida, C., Fermoso, J., Plaza, M.G., Rubiera, F. and Pis, J.J. (2008). Influence of Torrefaction on the Grindability and Reactivity of Woody Biomass. Fuel Processing Technology 89: 169-175.
Bach, Q.-V. and Skreiberg, Ø. (2016). Upgrading Biomass Fuels Via Wet Torrefaction: A Review and Comparison with Dry Torrefaction. Renewable and Sustainable Energy Reviews 54: 665-677.
Bar-Ziv, E., Saveliev, R. and Perelman, M. (2015). Torrefaction Apparatus and Process, Google Patents.
Basu, P. (2013). Chapter 4 - Torrefaction, In Biomass Gasification, Pyrolysis and Torrefaction (Second Edition), Academic Press, Boston, pp. 87-145.
Basu, P., Dhungana, A., Rao, S. and Acharya, B. (2013a). Effect of Oxygen Presence in Torrefier. Journal of the Energy Institute 86: 171-176.
Basu, P., Dhungana, A., Rao, S. and Acharya, B. (2013b). Effect of Oxygen Presence in Torrefier. Journal of the Energy Institute (Maney Publishing) 86: 171-176.
Belgiorno, V., De Feo, G., Della Rocca, C. and Napoli, R. (2003a). Energy from Gasification of Solid Wastes. Waste management 23: 1-15.
Belgiorno, V., De Feo, G., Della Rocca, C. and Napoli, R.M.A. (2003b). Energy from Gasification of Solid Wastes. Waste Management 23: 1-15.
Bergman, P.C., Boersma, A., Zwart, R. and Kiel, J. (2005). Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations. Energy Centre of Netherlands, Report No. ECN-C-05-013.
Bergman, P.C. and Kiel, J.H. In (Ed.)^(Eds.) Proc. 14th European Biomass Conference, Paris, France, 2005, pp. 17-21.
Boateng, A.A. and Mullen, C.A. (2013). Fast Pyrolysis of Biomass Thermally Pretreated by Torrefaction. Journal of Analytical and Applied Pyrolysis 100: 95-102.
Bridgeman, T., Jones, J., Shield, I. and Williams, P. (2008). Torrefaction of Reed Canary Grass, Wheat Straw and Willow to Enhance Solid Fuel Qualities and Combustion Properties. Fuel 87: 844-856.
Broström, M., Nordin, A., Pommer, L., Branca, C. and Di Blasi, C. (2012). Influence of Torrefaction on the Devolatilization and Oxidation Kinetics of Wood. Journal of Analytical and Applied Pyrolysis 96: 100-109.
Chen, C.-C. (2009). Novel Technologies for Energy Saving and Carbon Reduction of Water Emulsified Fuel and Carbon Containing Fly Ashes, In Environmental Engineering, National Cheng Kung University, p. 132.
Chen, J.-C., Lin, Y.-Z. and Chen, W.-Z. (2014a). Waste to Biofuel by Torrefaction Technology. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering 8: 545-548.
Chen, W.-H., Hsu, H.-C., Lu, K.-M., Lee, W.-J. and Lin, T.-C. (2011). Thermal Pretreatment of Wood (Lauan) Block by Torrefaction and Its Influence on the Properties of the Biomass. Energy 36: 3012-3021.
Chen, W.-H. and Kuo, P.-C. (2010). A Study on Torrefaction of Various Biomass Materials and Its Impact on Lignocellulosic Structure Simulated by a Thermogravimetry. Energy 35: 2580-2586.
Chen, W.-H. and Kuo, P.-C. (2011a). Isothermal Torrefaction Kinetics of Hemicellulose, Cellulose, Lignin and Xylan Using Thermogravimetric Analysis. Energy 36: 6451-6460.
Chen, W.-H. and Kuo, P.-C. (2011b). Torrefaction and Co-Torrefaction Characterization of Hemicellulose, Cellulose and Lignin as Well as Torrefaction of Some Basic Constituents in Biomass. Energy 36: 803-811.
Chen, W.-H., Lu, K.-M., Lee, W.-J., Liu, S.-H. and Lin, T.-C. (2014b). Non-Oxidative and Oxidative Torrefaction Characterization and Sem Observations of Fibrous and Ligneous Biomass. Applied Energy 114: 104-113.
Chen, W.-H., Lu, K.-M., Liu, S.-H., Tsai, C.-M., Lee, W.-J. and Lin, T.-C. (2013). Biomass Torrefaction Characteristics in Inert and Oxidative Atmospheres at Various Superficial Velocities. Bioresource Technology 146: 152-160.
Chen, W.-H., Peng, J. and Bi, X.T. (2015). A State of the Art Review of Biomass Torrefaction, Densification and Applications. Renewable and Sustainable Energy Reviews 44: 847-866.
Chen, W.-H. and Wu, J.-S. (2009). An Evaluation on Rice Husks and Pulverized Coal Blends Using a Drop Tube Furnace and a Thermogravimetric Analyzer for Application to a Blast Furnace. Energy 34: 1458-1466.
Chen, W.-H., Ye, S.-C. and Sheen, H.-K. (2012). Hydrothermal Carbonization of Sugarcane Bagasse Via Wet Torrefaction in Association with Microwave Heating. Bioresource Technology 118: 195-203.
Chew, J.J. and Doshi, V. (2011). Recent Advances in Biomass Pretreatment – Torrefaction Fundamentals and Technology. Renewable and Sustainable Energy Reviews 15: 4212-4222.
Couhert, C., Salvador, S. and Commandré, J. (2009). Impact of Torrefaction on Syngas Production from Wood. Fuel 88: 2286-2290.
Czernik, S. and Bridgwater, A. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels 18: 590-598.
Demirbas, A. (2004). Combustion Characteristics of Different Biomass Fuels. Progress in Energy and Combustion Science 30: 219-230.
Demirbas, A. (2007a). Combustion of Biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29: 549-561.
Demirbas, A. (2007b). Combustion Systems for Biomass Fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29: 303-312.
Deng, J., Wang, G.-j., Kuang, J.-h., Zhang, Y.-l. and Luo, Y.-h. (2009). Pretreatment of Agricultural Residues for Co-Gasification Via Torrefaction. Journal of Analytical and Applied Pyrolysis 86: 331-337.
Felfli, F.F., Luengo, C.A., Suárez, J.A. and Beatón, P.A. (2005). Wood Briquette Torrefaction. Energy for Sustainable Development 9: 19-22.
France, U.C.P. Find out More About Cop21, Last Access: 16 Feb.
Gao, Q., Haglund, P., Pommer, L. and Jansson, S. (2015). Evaluation of Solvent for Pressurized Liquid Extraction of Pcdd, Pcdf, Pcn, Pcbz, Pcph and Pah in Torrefied Woody Biomass. Fuel 154: 52-58.
Huang, Y.F., Chen, W.R., Chiueh, P.T., Kuan, W.H. and Lo, S.L. (2012). Microwave Torrefaction of Rice Straw and Pennisetum. Bioresource Technology 123: 1-7.
Idris, S.S., Abd Rahman, N., Ismail, K., Alias, A.B., Abd Rashid, Z. and Aris, M.J. (2010). Investigation on Thermochemical Behaviour of Low Rank Malaysian Coal, Oil Palm Biomass and Their Blends During Pyrolysis Via Thermogravimetric Analysis (Tga). Bioresour Technol 101: 4584-4592.
IEA, I.E.A. (2004). Biomass Combustion and Co-Firing: An Overview.
Jahirul, M., Rasul, M., Chowdhury, A. and Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis —a Technological Review. Energies 5: 4952-5001.
Jones, F.L. (2014). Process for Minimizing Dioxin Formation During Waste and Biomass Utilization, Google Patents.
Kakaras, E., Doukelis, A., Giannakopoulos, D. and Koumanakos, A. (2007). Economic Implications of Oxyfuel Application in a Lignite-Fired Power Plant. Fuel 86: 2151-2158.
Kolokolova, O., Levi, T., Pang, S. and Herrington, P. Torrefaction and Pyrolysis of Biomass Waste in Continuous Reactors.
Kyritsis, S. (2000). 1st World Conference on Biomass for Energy and Industry.
Li, H., Liu, X., Legros, R., Bi, X.T., Lim, C. and Sokhansanj, S. (2012). Torrefaction of Sawdust in a Fluidized Bed Reactor. Bioresource technology 103: 453-458.
Lin, Y.-C., Lee, W.-J., Chao, H.-R., Wang, S.-L., Tsou, T.-C., Chang-Chien, G.-P. and Tsai, P.-J. (2008). Approach for Energy Saving and Pollution Reducing by Fueling Diesel Engines with Emulsified Biosolution/Biodiesel/Diesel Blends. Environmental science & technology 42: 3849-3855.
Lin, Y.-C., Lee, W.-J., Chen, C.-C. and Chen, C.-B. (2006). Saving Energy and Reducing Emissions of Both Polycyclic Aromatic Hydrocarbons and Particulate Matter by Adding Bio-Solution to Emulsified Diesel. Environmental Science & Technology 40: 5553-5559.
Liu, N., Fan, W., Dobashi, R. and Huang, L. (2002). Kinetic Modeling of Thermal Decomposition of Natural Cellulosic Materials in Air Atmosphere. Journal of Analytical and Applied Pyrolysis 63: 303-325.
Lu, J.-J. and Chen, W.-H. (2013). Product Yields and Characteristics of Corncob Waste under Various Torrefaction Atmospheres. Energies 7: 13-27.
Lu, K.-M., Lee, W.-J., Chen, W.-H. and Lin, T.-C. (2013). Thermogravimetric Analysis and Kinetics of Co-Pyrolysis of Raw/Torrefied Wood and Coal Blends. Applied Energy 105: 57-65.
Lu, K.-M., Lee, W.-J., Chen, W.-H., Liu, S.-H. and Lin, T.-C. (2012). Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres. Bioresource technology 123: 98-105.
Ma, Y. and Li, S. (2012). The Pyrolysis, Extraction and Kinetics of Buton Oil Sand Bitumen. Fuel Processing Technology 100: 11-15.
Mansaray, K. and Ghaly, A. (1998). Thermal Degradation of Rice Husks in Nitrogen Atmosphere. Bioresource technology 65: 13-20.
McLendon, T.R., Lui, A.P., Pineault, R.L., Beer, S.K. and Richardson, S.W. (2004). High-Pressure Co-Gasification of Coal and Biomass in a Fluidized Bed. Biomass and Bioenergy 26: 377-388.
Medic, D., Darr, M., Shah, A., Potter, B. and Zimmerman, J. (2012). Effects of Torrefaction Process Parameters on Biomass Feedstock Upgrading. Fuel 91: 147-154.
Mei, Y., Liu, R., Yang, Q., Yang, H., Shao, J., Draper, C., Zhang, S. and Chen, H. (2015). Torrefaction of Cedarwood in a Pilot Scale Rotary Kiln and the Influence of Industrial Flue Gas. Bioresource technology 177: 355-360.
Meier, D., Ollesch, T. and Faix, O. (2001). Fast Pyrolysis of Impregnated Waste Wood—the Fate of Hazardous Components. Progress in Thermochemical Biomass Conversion: 1405-1416.
Mitchell, D. and Elder, T. (2010). Torrefaction? What’s That?
Mohan, D., Pittman, C.U. and Steele, P.H. (2006). Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy & fuels 20: 848-889.
Nocquet, T., Dupont, C., Commandre, J.-M., Grateau, M., Thiery, S. and Salvador, S. (2014). Volatile Species Release During Torrefaction of Wood and Its Macromolecular Constituents: Part 1 – Experimental Study. Energy.
Nussbaumer, T. (2003). Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy & fuels 17: 1510-1521.
Parikh, J., Channiwala, S. and Ghosal, G. (2005). A Correlation for Calculating Hhv from Proximate Analysis of Solid Fuels. Fuel 84: 487-494.
Perez, J., Munoz-Dorado, J., de la Rubia, T. and Martinez, J. (2002). Biodegradation and Biological Treatments of Cellulose, Hemicellulose and Lignin: An Overview. Int Microbiol 5: 53-63.
Phanphanich, M. and Mani, S. (2011). Impact of Torrefaction on the Grindability and Fuel Characteristics of Forest Biomass. Bioresour Technol 102: 1246-1253.
Pimchuai, A., Dutta, A. and Basu, P. (2010). Torrefaction of Agriculture Residue to Enhance Combustible Properties†. Energy & Fuels 24: 4638-4645.
Prins, M.J., Ptasinski, K.J. and Janssen, F.J. (2006a). Torrefaction of Wood: Part 1. Weight Loss Kinetics. Journal of Analytical and Applied Pyrolysis 77: 28-34.
Prins, M.J., Ptasinski, K.J. and Janssen, F.J. (2006b). Torrefaction of Wood: Part 2. Analysis of Products. Journal of analytical and applied pyrolysis 77: 35-40.
Prins, M.J., Ptasinski, K.J. and Janssen, F.J.J.G. (2006c). More Efficient Biomass Gasification Via Torrefaction. Energy 31: 3458-3470.
Repellin, V., Govin, A., Rolland, M. and Guyonnet, R. (2010). Energy Requirement for Fine Grinding of Torrefied Wood. Biomass and Bioenergy 34: 923-930.
Rousset, P., Aguiar, C., Labbé, N. and Commandré, J.-M. (2011). Enhancing the Combustible Properties of Bamboo by Torrefaction. Bioresource technology 102: 8225-8231.
Rousset, P., Macedo, L., Commandré, J.M. and Moreira, A. (2012). Biomass Torrefaction under Different Oxygen Concentrations and Its Effect on the Composition of the Solid by-Product. Journal of Analytical and Applied Pyrolysis 96: 86-91.
Saadon, S., Uemura, Y. and Mansor, N. (2014). Torrefaction in the Presence of Oxygen and Carbon Dioxide: The Effect on Yield of Oil Palm Kernel Shell. Procedia Chemistry 9: 194-201.
Sadaka, S. and Negi, S. (2009). Improvements of Biomass Physical and Thermochemical Characteristics Via Torrefaction Process. Environmental Progress & Sustainable Energy 28: 427-434.
Sami, M., Annamalai, K. and Wooldridge, M. (2001). Co-Firing of Coal and Biomass Fuel Blends. Progress in energy and combustion science 27: 171-214.
Sarvaramini, A., Gravel, O. and Larachi, F. (2013). Torrefaction of Ionic-Liquid Impregnated Lignocellulosic Biomass and Its Comparison to Dry Torrefaction. Fuel 103: 814-826.
Satpathy, S.K., Tabil, L.G., Meda, V., Naik, S.N. and Prasad, R. (2014). Torrefaction of Wheat and Barley Straw after Microwave Heating. Fuel 124: 269-278.
Saxena, R.C., Adhikari, D.K. and Goyal, H.B. (2009). Biomass-Based Energy Fuel through Biochemical Routes: A Review. Renewable and Sustainable Energy Reviews 13: 167-178.
Shankar Tumuluru, J., Sokhansanj, S., Hess, J.R., Wright, C.T. and Boardman, R.D. (2011). Review: A Review on Biomass Torrefaction Process and Product Properties for Energy Applications. Industrial Biotechnology 7: 384-401.
Shen, D.K., Gu, S., Luo, K.H., Bridgwater, A.V. and Fang, M.X. (2009). Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment. Fuel 88: 1024-1030.
Speight, J.G. (2010). The Biofuels Handbook.
T'ej, K. (2012). Acacia Confusa of Taiwan, 1 ed.
Tung, Y.-T., Wu, J.-H., Hsieh, C.-Y., Chen, P.-S. and Chang, S.-T. (2009). Free Radical-Scavenging Phytochemicals of Hot Water Extracts of Acacia Confusa Leaves Detected by an on-Line Screening Method. Food Chemistry 115: 1019-1024.
Uemura, Y., Omar, W., Othman, N.A., Yusup, S. and Tsutsui, T. (2013). Torrefaction of Oil Palm Efb in the Presence of Oxygen. Fuel 103: 156-160.
Uemura, Y., Saadon, S., Osman, N., Mansor, N. and Tanoue, K.-i. (2015). Torrefaction of Oil Palm Kernel Shell in the Presence of Oxygen and Carbon Dioxide. Fuel 144: 171-179.
van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A. and Ptasinski, K.J. (2011). Biomass Upgrading by Torrefaction for the Production of Biofuels: A Review. Biomass and Bioenergy.
Wang, C., Peng, J., Li, H., Bi, X.T., Legros, R., Lim, C. and Sokhansanj, S. (2013). Oxidative Torrefaction of Biomass Residues and Densification of Torrefied Sawdust to Pellets. Bioresource technology 127: 318-325.
Wang, L.-C., Chiou, T.-W. and Chang-Chien, G.-P. Abating the Emissions of Polychlorinated Dibenzo-P-Dioxins and Dibenzofurans from Municipal Solid Waste Incinerators by Spraying Bio-Solution in Feeding Waste.
Wang, M.J., Huang, Y.F., Chiueh, P.T., Kuan, W.H. and Lo, S.L. (2012). Microwave-Induced Torrefaction of Rice Husk and Sugarcane Residues. Energy 37: 177-184.
Wannapeera, J. and Worasuwannarak, N. (2012). Upgrading of Woody Biomass by Torrefaction under Pressure. Journal of Analytical and Applied Pyrolysis 96: 173-180.
Yan, W., Acharjee, T.C., Coronella, C.J. and Vásquez, V.R. (2009). Thermal Pretreatment of Lignocellulosic Biomass. Environmental Progress & Sustainable Energy 28: 435-440.
Zhang, L., Xu, C. and Champagne, P. (2010). Overview of Recent Advances in Thermo-Chemical Conversion of Biomass. Energy Conversion and Management 51: 969-982.
Zheng, A., Zhao, Z., Chang, S., Huang, Z., He, F. and Li, H. (2012). Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass. Energy & Fuels 26: 2968-2974.