簡易檢索 / 詳目顯示

研究生: 李祐丞
Lee, Yu-Chen
論文名稱: 區域電離層模型提升即時精密單點定位之效能分析
Performance Analysis of Real-Time Precise Point Positioning Enhanced by a Regional Ionospheric Model
指導教授: 楊名
Yang, Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2026
畢業學年度: 114
語文別: 中文
論文頁數: 93
中文關鍵詞: 即時精密單點定位狀態空間表示區域電離層模型電離層約制收斂時間定位精度
外文關鍵詞: Real-time Precise Point Positioning (RT-PPP), State Space Representation (SSR), Regional Ionosphere Model (RIM), Ionospheric Constraint, Convergence Time, Positioning Accuracy
相關次數: 點閱:39下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 即時精密單點定位(Real-time Precise Point Positioning, RT-PPP)是一種具備不依賴地面參考站即可取得高精度成果的GNSS定位技術,其利用即時狀態空間表示(State Space Representation, SSR)格式之軌道、時鐘等改正產品消除定位誤差,使定位精度達到公寸至公分等級。然而,RT-PPP 的實務應用價值高度取決於定位收斂速度與精度能否快速達到可接受水準。尤其在電離層變化劇烈的地區,如位於低緯度電離層異常區的台灣,電離層延遲難以準確估算,經常導致定位收斂時間延長與定位精度下降。為改善上述問題,本研究採用內政部國土測繪中心透過Trimble Pivot軟體,根據台灣衛星基準站觀測資料即時產製之區域電離層模型(Regional Ionosphere Model, RIM),透過空間內插取得待測站之垂直總電子含量(VTEC)再將其轉換為先驗電離層延遲資訊,並作為無差分PPP模型中電離層延遲項的約制條件,以降低電離層估計之不確定性,進而改善RT-PPP之效能。本研究以靜態資料模擬動態方式進行RT-PPP實驗,選用台灣本島三個GNSS連續觀測站2025年5月五天之GPS與GLONASS雙頻衛星觀測資料,並利用BKG分析中心提供之即時軌道、時鐘及電碼硬體延遲改正產品,搭配卡曼濾波器進行定位解算。透過比較引入與未引入RIM之RT-PPP解算成果,分析其定位精度與收斂速度之改善程度。實驗結果顯示,在引入RIM輔助後,RT-PPP之整體定位效能有所提升。在定位精度方面,水平方向整體定位誤差由0.13公尺降至0.09公尺,改善率達29.2%;垂直方向整體定位誤差由0.16公尺降至0.12公尺,改善率約為22.1%。其中在定位初始時刻,水平方向定位精度提升幅度達70.7%,顯示RIM能有效修正初始電離層誤差。在收斂速度方面以40、30及20公分作為定位收斂門檻值,引入RIM約制後,水平方向收斂時間分別縮短了34%、38%及29%,垂直方向則縮短了22%、19%及20%。本研究驗證了RIM能有效減緩台灣地區電離層擾動對RT-PPP之影響,提升定位效能,具備實務應用價值。

    Real-time Precise Point Positioning (RT-PPP) is a high-accuracy GNSS technique that does not require ground reference stations and uses State Space Representation (SSR) corrections to mitigate major error sources. However, in low-latitude regions with strong ionospheric variability—such as Taiwan within the equatorial ionization anomaly—the difficulty of accurately estimating ionospheric delay often leads to longer convergence times and reduced positioning accuracy. To improve RT-PPP performance, this study incorporates the Regional Ionosphere Model (RIM) generated in real time by Taiwan’s National Land Surveying and Mapping Center using Trimble Pivot software. VTEC values obtained through spatial interpolation are converted into a priori ionospheric delay constraints and applied in an undifferenced PPP model to reduce ionospheric estimation uncertainty. A simulated real-time experiment was conducted using five days of dual-frequency GPS and GLONASS data from three GNSS stations in Taiwan in May 2025, together with BKG real-time orbit, clock, and code bias corrections. RT-PPP solutions with and without RIM constraints were compared using a Kalman filter. Results indicate that integrating RIM significantly enhances RT-PPP performance. The horizontal and vertical RMS errors are reduced from 0.13 m to 0.09 m (29.2%) and from 0.16 m to 0.12 m (22.1%), respectively, with initial horizontal accuracy improving by up to 70.7%. In addition, the convergence time is substantially shortened in both horizontal and vertical directions. These results confirm that RIM effectively mitigates ionospheric disturbances in Taiwan and enhances both the accuracy and convergence of RT-PPP, demonstrating clear practical value for real-time applications.

    摘要 I EXTENDED ABSTRACT II 致謝 IX 目錄 X 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 3 1.3 研究動機與目的 6 第二章 即時精密單點定位 (RT-PPP) 8 2.1 RT-PPP基本原理 8 2.2 GNSS觀測方程式與系統誤差 8 2.2.1 衛星相關誤差項 11 2.2.2 接收機相關誤差 13 2.2.3 訊號傳播誤差 14 2.2.4 其他誤差項 15 2.3 即時精密單點定位 17 2.4 衛星星曆與SSR改正產品 19 2.4.1 精密星曆 (Precise Ephemeris) 20 2.4.2 即時SSR改正產品 21 2.5 即時SSR改正量傳輸方式 23 2.5.1 BKG NTRIP Client 24 第三章 區域電離層模型 27 3.1 電離層 27 3.1.1 D層 27 3.1.2 E層 27 3.1.3 F層 28 3.2 電離層變化 29 3.2.1 全球尺度 29 3.2.2 區域尺度 30 3.3 電離層延遲 31 3.4 單層電離層模型 33 3.5 區域電離層模型 34 第四章 研究方法 36 4.1 RT-PPP方法 36 4.1.1 SSR改正資料內容及使用方法 36 4.2 內政部國土測繪中心區域電離層模型 43 4.2.1 空間內插 45 4.3 精密單點定位之電離層項約制 47 4.3.1 電離層資訊先驗精度給定 49 第五章 實驗結果與分析 51 5.1 實驗資料 51 5.1.1 觀測資料 51 5.1.2 實驗期間之電離層環境 52 5.1.3 RT-PPP改正資料獲取方法 55 5.2 研究測試流程 58 5.3 定位精度成果分析 59 5.4 收斂速度成果分析 69 第六章 結論與建議 71 第七章 參考文獻 73

    王鼎鈞(2020)。即時精密單點定位探討。國立交通大學土木工程學系碩士論文。
    林家齊(2024)。基於狀態空間表示之精密單點定位評估:PPP-RTK和SSR-post。國立成功大學測量及空間資訊學系碩士論文。
    陳俊瑋(2019)。結合開源軟體 RTKLIB 與 GNSS 浮標分析即時潮位,國立中正大學地球與環境科學系碩士論文。
    楊名、余彥琛、儲豐宥(2025)。使用區域電離層模型提升精密單點定位效能。中國土木水利工程學刊,第37卷,第5期,第363-368頁。
    儲豐宥、楊名、李皇緣(2022)。利用全球電離層網格縮短GPS精密單點定位之收斂時間。台灣土地研究,第25卷,第2期,第69-88頁。
    Abd Rabbou, M., & El-Rabbany, A. (2016). Performance analysis of precise point positioning using multi-constellation GNSS: GPS, GLONASS, Galileo and BeiDou. Survey Review, 49(352), 39-50.
    Arora, B. S., Morgan, J., Ord, S. M., Tingay, S. J., Hurley-Walker, N., Bell, M., Bernardi, G., Bhat, N. D. R., Briggs, F., Callingham, J. R., Deshpande, A. A., Dwarakanath, K. S., Ewall-Wice, A., Feng, L., For, B.-Q., Hancock, P., Hazelton, B. J., Hindson, L., Jacobs, D., Johnston-Hollitt, M., Kapińska, A. D., Kudryavtseva, N., Lenc, E., McKinley, B., Mitchell, D., Oberoi, D., Offringa, A. R., Pindor, B., Procopio, P., Riding, J., Staveley-Smith, L., Wayth, R. B., Wu, C., Zheng, Q., Bowman, J. D., Cappallo, R. J., Corey, B. E., Emrich, D., Goeke, R., Greenhill, L. J., Kaplan, D. L., Kasper, J. C., Kratzenberg, E., Lonsdale, C. J., Lynch, M. J., McWhirter, S. R., Morales, M. F., Morgan, E., Prabu, T., Rogers, A. E. E., Roshi, A., Shankar, N. U., Srivani, K. S., Subrahmanyan, R., Waterson, M., Webster, R. L., Whitney, A. R., Williams, A., & Williams, A. C. L. (2015). Ionospheric modelling using GPS to calibrate the MWA. I: Comparison of first-order ionospheric effects between GPS models and MWA observations. Publications of the Astronomical Society of Australia, 32, e029.
    Balan, N., Liu, L., & Le, H. (2018). A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth and Planetary Physics, 2(4), 257-275.
    Cai, H., Yang, Y., Gehly, S., He, C. & Jah, M. (2020). Sensor tasking for search and catalog maintenance of geosynchronous space objects. Acta Astronautica, 175.
    Chen, K. (2004). Real-time precise point positioning and its potential applications. Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004), 1844-1854, Long Beach, California, United States.
    Chen, Y.-S., Chen, C.-H., Yang, M., & Chu, F.-Y. (2024). Evaluate the impact of regional ionospheric data assimilation model on precise point positioning. Space Weather, 22, e2024SW003858.
    Forbes, J. M., Palo, S. E., & Zhang, X. (1999). Variability of the ionosphere. Journal of Atmospheric and Solar-terrestrial Physic, 62, 685-693.
    Ge, M., Gendt, G., Rothacher, M., Shi, C., & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. Journal of Geodesy, 82, 389-399.
    Håkansson, M., Jensen, A.B.O., Horemuz, M., & Hedling, G. (2017). Review of code and phase biases in multi-GNSS positioning. GPS Solution, 21, 849-860.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS – Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer, Vienna.
    Kouba, J., & Héroux, P. (2001). Precise Point Positioning Using IGS Orbit and Clock Products. GPS Solutions, 5, 12-28.
    Leick, A., Rapoport, L., & Tatarnikov, D. (2015). GPS satellite surveying (4th ed.). John Wiley & Sons, Inc., Hoboken, New Jersey.
    Lenz, E. (2004). Networked Transport of RTCM via Internet Protocol (NTRIP) – Application and Benefit in Modern Surveying Systems. FIG Working Week 2004, Athens, Greek.
    Li, B., Zhang, Z., & Miao, W. (2025). GNSS Real-Time Kinematic Positioning: Theory and Applications. Springer, Singapore.
    Li, B., Ge, H., Bu, Y., Zheng, Y., & Yuan, L. (2022). Comprehensive assessment of real-time precise products from IGS analysis centers. Satellite Navigation, 3, 12.
    Li, X., Huang, J., Li, X., Shen, Z., Han, J., Li, L., &Wang, B. (2022) Review of PPP–RTK: achievements, challenges, and opportunities. Satellite Navigation, 3, 28.
    Malys, S., & Jensen, P. A. (1990). Geodetic point positioning with GPS carrier beat phase data from the CASA UNO Experiment. Geophysical Research Letters, 17(5), 651-654.
    Niell, A. E. (1996), Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101(B2), 3227-3246
    Petit, G. & Luzum, B. (2010). IERS conventions (2010), IERS Technical Note No. 36
    Psychas, D., Verhagen, S., Liu, X., Memarzadeh, Y., & Visser, H. (2019). Assessment of ionospheric corrections for PPP-RTK using regional ionosphere modelling. Measurement Science and Technology, 30(1), 014001.
    RTCM SC 104. (2013). RTCM Standard 104: Differential GNSS (Global Navigation Satellite System) Services. RTCM.
    Schaer, S. (1999) Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System. Geodaetisch-Geophysikalische Arbeiten in der Schweiz, 59.
    Stürze, A., Mervart, L., Söhne, W. & Weber, G. & Wübbena, G. (2012). Real-Time PPP using open CORS Networks and RTCM Standards. In Proceedings of the 3rd International Conference on Machine Control & Guidance, 11-18, Stuttgart, Germany.
    Teunissen, P. J. G., & Montenbruck, O. (2017). Springer Handbook of Global Navigation Satellite Systems. Springer Nature Switzerland AG.
    Tu, R., Ge, M., Zhang, H. & Huang, G. (2013). The realization and convergence analysis of combined PPP based on raw observation. Advances in Space Research, 52, 211-221.
    Wübbena, G., Schmitz, M., & Bagge, A. (2005). PPP-RTK: Precise point positioning using state-space representation in RTK networks. In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005), 2584-2594, Long Beach, California, United States.
    Wübbena, G. (2012). RTCM State Space Representation (SSR) Overall Concepts Towards PPP-RTK, Presented at PPP-RTK & Open Standards Symposium, Frankfurt, Germany.
    Weber, G., Mervart, L., Lukes, Z., Rocken, C., & Dousa, J. (2007). Real-time clock and orbit corrections for improved point positioning via NTRIP. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 1992-1998, Fort Worth, Texas, United States.
    Weber, G.,Mervart, L., Stürze, A., Rülke, A. & Stöcker, D. (2016) BKG Ntrip Client, (BNC) Version 2.12.
    Yu, C., Zhang, Y., Chen, J., Chen, Q., Xu, K., & Wang, B. (2023). Performance Assessment of Multi-GNSS Real-Time Products from Various Analysis Centers. Remote Sensing, 15(1), 140.
    Zhang, H., Gao, Z., Ge, M., Niu, X., Huang, L., Tu, R., & Li, X. (2013). On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations. Sensors, 13(11), 15708-15725.
    Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., & Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 5005-5017.

    下載圖示
    校外:立即公開
    QR CODE