| 研究生: |
黃浩洋 Huang, Hao-Yang |
|---|---|
| 論文名稱: |
功能性材料圓錐截柱殼之半解析有限元素法分析 Semi-Analytical Finite Element Methods for the Analysis of Functionally Graded Truncated Conical Shells |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 有限環形柱體法 、功能性梯度材料 、Reissner混合變分原理 、靜態 、圓錐殼 、變化邊界條件 |
| 外文關鍵詞: | finite annular prism methods, functionally graded materials, static, truncated conical shells |
| 相關次數: | 點閱:120 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文基於Reissner混合變分原理(Reissner’s mixed variational theorem,RMVT),發展半解析有限環形柱體法(semi-analytical finite annular prism method,FAPM)作為雙向功能性梯度(functionally graded,FG)圓錐殼,於變化邊界條件下承受正弦分佈或均佈載重時的三維(three-dimensional,3D)應力與變形分析。在此理論中,FG圓錐殼的斷面被分割為一定數量的有限環形柱體元素,其中利用傅立葉函數以及拉格朗日多項式,分別對圓錐殼的環向及每一環形元素中作為場量主變數的子午線-厚度面之場量變數進行內插。假設FG圓錐殼的材料成份體積分量於子午線-厚度面遵循雙向冪次函數分佈,其有效材料性質則利用兩相材料混合定律推估。本文FAPM的分析結果證明其解收斂迅速,且其收斂解與文獻中的3D分析解高度契合。
Based on the Reissner’s mixed variational theorem (RMVT), a semi-analytical finite annular prism method (FAPM) is developed for three-dimensional (3D) static analyses of bi-directional functionally graded (FG) truncated conical shells. The material properties of the FG truncated conical shell are assumed to obey a bi-directional power-law distribution of the volume fractions of the constituents through the meridian-thickness surface, the effective material properties of which are estimated using the rule of mixtures. Implementation of the current FAPMs shows their solutions converge rapidly and that the convergent solutions are in excellent agreement with the 3D solutions available in the literature.
Bert, C. W., Malik, M. (1996). Differential quadrature method in computational mechanics: A review. Applied Mechanics Reviews 49(1):1-28.
Brischetto, S., Carrera, E. (2010). Advanced mixed theories for bending analysis of functionally graded plates. Composite Structures 88:1474-1483.
Carrera, E. (2003). Historical review of zig-zag theories for multilayered plates and shells. Applied Mechanics Reviews 56(3):287-308.
Carrera, E., Brischetto, S. (2009). A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Applied Mechanics Reviews 62(1):010803 (17 pages).
Chandrashekhara, K., Karekar, M. S. (1992). Bending analysis of a truncated conical shell subjected to asymmetric load. Thin-Walled Structures 13(4):299-318.
Correia, I. F. P., Barbosa, J. I., Soares, C. M. M., Soares, C. A. M. (2000). A finite element semi-analytical model for laminated axisymmetric shells: statics, dynamics and buckling. Computers & Structures 76(1-3):299-317.
Correia, I. F. P., Soares, C. M. M., Soares, C. A. M., Herskovits, J. (2003). Analysis of laminated conical shell structures using higher order models. Composite Structures 62:383-390.
Donnell, L. H. (1976). Beams, Plates, and Shells. New York: McGraw-Hill.
Du, H., Lim, M. K., Lin, R. M. (1994). Application of generalized differential quadrature method to structural problems. International Journal for Numerical Methods in Engineering 37(11):1881-1896.
Eipakchi, H. R. (2010). Third-order shear deformation theory for stress analysis of a thick conical shell under pressure. Journal of Mechanics of Materials and Structures 5(1):1-17.
Eipakchi, H. R., Khadem, S. E., Rahimi S., G. H. (2008). Axisymmetric stress analysis of a thick conical shell with varying thickness under nonuniform internal pressure. Journal of Engineering Mechanics 134(8):601-610.
W. (1973). Stresses in Shells. New York: Springer-Verlag.
Ghannad, M., Nejad, M. Z., Rahimi, G. H. (2009). Elastic solution of axisymmetric thick truncated conical shells based on first-order shear deformation theory. Mechanika 5(79):13-19.
Gould, P. L. (1999). Analysis of Plates and Shells. New Jersey: Prentice Hall.
Jones, R. M. (1975). Mechanics of Composite Materials. Washington, D. C.: Scripta Book Company.
Kang, J. H. (2012). Three-dimensional vibration analysis of joined thick conical-cylindrical shells of revolution with variable thickness. Journal of Sound and Vibration 331(18):4187-4198.
Kang, J. H., Leissa, A. W. (2005). Free vibrations of thick, complete conical shells of revolution from a three-dimensional theory. Journal of Applied Mechanics 72(5):797-800.
Kiani, Y., Dimitri, R., Tornabene, F. (2018). Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures 172:472-482.
Koizumi, M. (1993). The concept of FGM. Ceramic Transactions 34:3_10.
Koizumi, M. (1997). FGM activities in Japan. Composites Part B-Engineering 28(1-2):1_4.
Mantari, J. L. (2015). Refined and generalized hybrid type quasi-3D shear deformation theory for the bending analysis of functionally graded shells. Composites Part B-Engineering 83:142-152.
Nejad, M. Z., Jabbari, M., Ghannad, M. (2015). Elastic analysis of FGM rotating thick truncated conical shells with axially-varying properties under non-uniform pressure loading. Composite Structures 122:561-569.
Nejati, M., Asanjarani, A., Dimitri, R., Tornabene, F. (2017). Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences 130:383-398.
Pagano, N. J. (1969). Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials 3:398-411.
Reddy, J. N. (2004). Mechanics of Laminated Composite Plates and Shells. New York: CRC Press.
Reddy, J. N. (1984). An Introduction to the Finite Element Method. New York: McGraw-Hill book company.
Reddy, J. N., Chin, C. D. (1998). Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21:593-626.
Reissner, E. (1984). On a certain mixed variational theorem and a proposed application. International Journal for Numerical Methods in Engineering 20(7):1366-1368.
Reissner, E. (1986). On a mixed variational theorem and on shear deformable plate theory. International Journal for Numerical Methods in Engineering 23(2):193-198.
Santos, H., Soares, C. M. M., Soares, C. A. M., Reddy, J. N. (2008). A finite element model for the analysis of 3D axisymmetric laminated shells with piezoelectric sensors and actuators: Bending and free vibration. Computers & Structures 86(9): 940-947.
Santos, H., Soares, C. M. M., Soares, C. A. M., Reddy, J. N. (2009). A semi-analytical finite element model for the analysis of cylindrical shells made of functionally graded materials. Composite Structures 91(4): 427-432.
Soedel, W. (1993). Vibrations of Shells and Plates. New York: Marcel Dekker, Inc.
Sundarasivarao, B. S. K., Ganesan, N. (1991). Deformation of varying thickness of conical shells subjected to axisymmetric loading with various end conditions. Engineering Fracture Mechanics 39(6):1003-1010.
Tavares, S. A. (1996). Thin conical shells with constant thickness and under axisymmetric load. Computers & Structures 60(6):895-921.
Tornabene, F. (2016). General higher-order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels. Mechanics of Advanced Materials and Structures 23(9):1046-1067.
Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E. (2015). Strong formulation finite element method based on differential quadrature: a survey. Applied mechanics Reviews 67:020801 (55 pages).
Tornabene, F., Liverani, A., Caligiana, G. (2012). Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method. International Journal of Mechanical Sciences 61(1):71-87.
Tornabene, F., Viola, E., Inman, D. J. (2009). 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. Journal of Sound and Vibration 328(3):259-290.
Varadan, T. K., Bhaskar, K. (1991). Bending of laminated orthotropic cylindrical shells-an elasticity approach. Composite Structures 17(2):141-156.
Vinson, J. R., Sierakowski, R. L. (1986). The Behavior of Structures Composed of Composite Materials., The Netherlands: Martinus Nijhoff Publishers.
Viola, E., Rossetti, L., Fantuzzi, N., Tornabene, F. (2014). Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Composite Structures 112:44-65.
Wang, Y., Ding, H., Xu, R. (2016). Three-dimensional analytical solutions for the axisymmetric bending of functionally graded annular plates. Applied Mathematical Modelling 40(9-10):5393-5420.
Wu, C. P., Chiu, K. H., Wang, Y. M. (2008). A review on the three-dimensional analytical approaches of multilayered and functionally graded piezoelectric plates and shells. CMC-Computers, Materials, & Continua 8(2):93-132.
Wu, C. P., Hung, Y. C. (1999). Asymptotic theory of laminated circular conical shells. International Journal of Engineering Science 37(8):977-1005.
Wu, C.P., Hung, Y. C., Lo, J. Y. (2002). A refined asymptotic theory of laminated circular conical shells. European Journal of Mechanics 21(2):281-300.
Wu, C. P., Lee, C. Y. (2001). Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. International Journal of Mechanical Sciences 43(8): 1853-1869.
Wu, C. P., Li, H. Y. (2013a). An RMVT-based finite rectangular prism method for the 3D analysis of sandwich FGM plates with various boundary conditions, CMC-Computers, Materials, & Continua 34(1): 27-62.
Wu, C. P., Li, H. Y. (2013b). RMVT-based finite cylindrical prism methods for multilayered functionally graded circular hollow cylinders with various boundary conditions. Composite Structures 100:592-608.
Wu, C. P., Liu, Y. C. (2016). A review of semi-analytical numerical methods for laminated composite and multilayered functionally graded elastic/piezoelectric plates and shells. Composite Structures 147:1-15.
Wu, C. P., Yu, L. T. (2018). Quasi-3D static analysis of two-directional functionally graded circular plates. Steel and Composite Structures 27(6):789-801.