| 研究生: |
王韻涵 Wang, Yun-Han |
|---|---|
| 論文名稱: |
由脂多醣引發老鼠中樞神經系統發炎其腦脊髓液中蛋白質體的變化 Changes in Rat's Cerebrospinal Fluid Proteome Following Lipopolysaccharide-induced CNS Inflammation |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 中樞神經系統發炎 、液相層析串聯式質譜儀 、腦脊髓液 、脂多醣 |
| 外文關鍵詞: | cerebrospinal fluid, Lipopolysaccharide, liquid chromatography tandem mass spectrometry |
| 相關次數: | 點閱:227 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脂多醣為格蘭氏陰性菌(gram-negative bacteria)外層細胞壁上的一種內毒素(endotoxin),其會引起中樞神經系統發炎。脂多醣能活化中樞神經系統中的微神經膠細胞(microglia)使其釋放出促發炎或抗發炎物質,例如:細胞激素、化學激活激素、前列腺素等發炎相關物質,這些由細胞釋放的物質大部份為蛋白質,並且可能會進入腦脊髓液中。之前有文獻報導過,某些腦脊髓液中的蛋白質被認為來自於大腦並且由中樞神經系統之細胞所釋放出。因此鑑定腦脊髓液之蛋白質體對於瞭解中樞神經系統的狀況具有參考價值。本研究的目的為,藉由腦室注射脂多醣的方式引發老鼠中樞神經系統發炎,配合利用液相層析串聯式質譜儀分析中樞神經系統發炎之老鼠其腦脊髓液蛋白質體的變化。依據免疫組織化學染色的結果,發現施予老鼠脂多醣後第五天最能代表中樞神經系統發炎情況,並且以此時間點為抽取老鼠腦脊髓液之取樣時間點。在液相層析串聯式質譜儀中,有237段胜肽片段(186個蛋白質)被鑑定到。在186個蛋白質中,根據Swiss-Prot網站資料庫搜尋,有37個蛋白質為存在於中樞神經系統組織(包含:腦、腦下垂體及腦脊髓液)中。本研究以液相層析四極棒飛行時間質譜儀(LC-Q-TOF-MS)來測量上述這186個蛋白質對於處理脂多醣後所產生的表現量差異分析。實驗結果發現18個蛋白質其表現量在實驗組與對照組間具有統計上明顯差異(p-value<0.05,以Wilcoxon rank-sum test進行統計, N = 6);其中,有16個蛋白質在實驗組中表現量增加,另外兩個蛋白質則是表現量降低。在這18個蛋白質中,有9個蛋白質,Shen-dan、PRP18 pre-mRNA processing factor 18 homolog、L-fucose kinase short variant、calcium activated chloride channel、complement C3、CYP2J9(cytochrome P450, family 2, subfamily J, polypeptide 9)、platelet-activating factor acetylhydrolase(PAF-AHs)、phosphatidylinositol-4-phosphate 5-kinase(type II, beta)、serine/threonine-protein kinase MARK2,為Swiss-Prot網站資料庫搜尋或先前有文獻報導存在於中樞神經系統中。已知complement C3會參與中樞神經系統發炎過程;之前有學者將脂多醣注射於老鼠體內發現PAF-Ahs在一些器官(如:肝臟、脾臟及肺臟)中表現量增加。MARK2為一種serine/threonine-protein kinase,它能磷酸化蛋白質tau;tau為一種神經的微細小管聯繫性蛋白質(neuronal microtubule-associated protein),在阿茲海默症(Alzheimer's disease)中可以觀察到異常之磷酸化tau及其聚集的情形。本研究在腦脊髓液中發現到有差異的蛋白質可能參與脂多醣引發中樞神經系統發炎。
Lipopolysaccharide (LPS) is a constituent on the outer membrane of gram-negative bacteria and induces the inflammation in the central nervous system (CNS). LPS is known to activate microglia to release pro- or anti-inflammatory cytokines, chemokines, prostaglandins, and nitric oxide. Most of these inflammatory molecules are proteins which may enter into the cerebrospinal fluid (CSF). It has been reported that certain CSF proteins are brain-derived and released by some of the CNS cells (e.g., astrocytes and neurons). Characterization of CSF proteome has the potential merit for understanding of certain biological events in the CNS. The objective of this study was to investigate the changes of rat CSF proteome in response to LPS-induced CNS inflammation using intracerebroventricular LPS administration and liquid chromatography tandem mass spectrometry (LC-MS/MS) proteomics analysis. CSF samples were obtained 5 days after administration when CNS inflammation was confirmed by immunohistochemistry (IHC). LC-MS/MS analysis identified 237 unique peptides, corresponding to 186 proteins. According to annotations in the Swiss-Prot database, 37 proteins, among 186 proteins identified, are known to be found in CNS tissues, including brain, pituitary gland, and CSF. Differential analysis was performed using liquid chromatography quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS) to measure the relative changes of these 186 proteins in response to LPS treatment. It was found that the levels of 16 proteins increased with LPS-induced inflammation, while only 2 proteins decreased (p-value < 0.05, Wilcoxon rank-sum test, N = 6). Among them, Shen-dan, PRP18 pre-mRNA processing factor 18 homolog, L-fucose kinase short variant, calcium activated chloride channel, complement C3, CYP2J9 (cytochrome P450, family 2, subfamily J, polypeptide 9), platelet-activating factor acetylhydrolase (PAF-Ahs), phosphatidylinositol-4-phosphate 5-kinase (type II, beta) and serine/threonine-protein kinase MARK2, were known to present in the CNS according to annotations in the Swiss-Prot database and limited literature search. Complement C3 is known to involve with the CNS inflammatory processes. Platelet-activating factor acetylhydrolase (PAF-Ahs) has been reported to increase in organs, such as liver, spleen, and lung, after systemic injection of LPS to rat. Microtubule affinity regulating kinase 2 (MARK2) is a serine/threonine-protein kinase and has the ability to phosphorylate tau protein, a neuronal microtubule-associated protein. The abnormal phosphorylation and aggregation of tau are hallmarks of Alzheimer’s disease. The differential proteomics profiling of CSF has revealed several proteins that are potentially involved with LPS-induced CNS inflammation.
Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiology of Aging. 21:383-421. (2000)
Aloisi F. Immune function of microglia. Glia. 36:165-179. (2001)
Bazan NG. The neuromessenger platelet-activating factor in plasticity and neurodegeneration. Progress in Brain Research. 118:281-291. (1998)
Bennett SA, Chen J, Pappas BA, Robert DC, Tenniswood M. Platelet activating factor receptor expression is associated with neuronal apoptosis in an in vivo model of excitotoxicity. Cell Death and Differentiation. 5:867-875. (1998)
Bergquist J, Palmblad M, Wetterhall M, Håkansson P, Markides KE. Peptide mapping of proteins in human body fluids using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrometry Reviews. 21:2-15. (2002)
Boos L, Szalai AJ, Barnum SR. C3a expressed in the central nervous system protects against LPS-induced shock. Neuroscience Letters. 387:68-71. (2005)
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-254. (1976)
Conly JM, Ronald AR. Cerebrospinal fluid as a diagnostic body fluid. American Journal of Medicine. 75:102-108. (1983)
Davidsson P, Paulson L, Hesse C, Biennow K, Nisson CL. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics. 1:444-452. (2001)
Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjogren M, Blennow K. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport. 13:611-615. (2002)
Davidsson P, Sjogren M, Andreasen N, Lindbjer M, Nilsson CL, Westman-Brinkmalm A, Blennow K. Studies of the pathophysiological mechanisms in frontotemporal dementia by proteome analysis of CSF proteins. Brain Research. Molecular Brain Research. 109:128-133. (2002)
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E. MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell. 89:297-308. (1997)
Figeys D. Proteomics in 2002: A year of technical development and wide-ranging applications. Analytical Chemistry. 75:2891-2905. (2003)
Gasque P, Neal JW, Singhrao SK, McGreal EP, Dean YD, Van BJ, Morgan BP. Roles of the complement system in human neurodegenerative disorders: pro-inflammatory and tissue remodeling activities. Molecular Neurobiology. 25:1-17. (2002)
Gong C, Hoff JT, Keep RF. Acute inflammatory reaction following experimental intracerebral hemorrhage in rat. Brain Research. 871:57-65. (2000)
Haga S, Ikeda K, Sato M, Ishii T. Synthetic Alzheimer amyloid beta/A4 peptides enhance production of complement C3 component by cultured microglial cells. Brain Research. 601:88-94. (1993)
Heine G, Zucht HD, Schuhmann MU, Bürger K, Jürgens M, Zumkeller M, Schneekloth CG, Hampel H, Schulz-Knappe P, Selle H. High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases. Journal Chromatography B: Analytical Technologies in Biomedical and Life Sciences. 782:353-361. (2002)
Howard KM, Olson MS. The expression and localization of plasma platelet-activating factor acetylhydrolase in endotoxemic rats. Journal of Biological Chemistry. 275:19891-19896. (2000)
Howard KM, Miller JE, Miwa M, Olson MS. Cell-specific regulation of expression of plasma-type platelet-activating factor acetylhydrolase in the liver. Journal of Biological Chemistry. 272:27543-27548. (1997)
Jeong SM, Park HK, Yoon IS, Lee JH, Kim JH, Jang CG, Lee CJ, Nah SY. Cloning and expression of Ca2+-activated chloride channel from rat brain. Biochemical and Biophysical Research Communications. 334:569-576. (2005)
Jiang L, Lindpaintner K, Li HF, Gu NF, Langen H, He L, Fountoulakis M. Proteomic analysis of the cerebrospinal fluid of patients with schizophrenia. Amino Acids. 25:49-57. (2003)
Johanson CE. Ventricles and cerebrospinal fluid. In Neuroscience in Medicine (Conn PM, Ed.), pp. 171-196. Lippincott, Philadelphia. (1995)
Lafon-Cazal M, Adjali O, Galeotti N, Poncet J, Jouin P, Homburger V, Bockaert J, Marin P. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. Journal of Biological Chemistry. 278:24438-24448. (2003)
Levi-Strauss M, Mallat M. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. Journal of Immunology. 139:2361-2366. (1987)
Lescuyer P, Allard L, Zimmermann-Ivol CG, Burgess JA, Hughes-Frutiger S, Burkhard PR, Sanchez JC, Hochstrasser DF. Identification of post-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics. 4:2234-2241. (2004)
Matyszak MK. Inflammation in the CNS: balance between immunological privilege and immune responses. Progress in Neurobiology. 56:19-35. (1998)
Memon RA, Fuller J, Moser AH, Feingold KR, Grunfeld C. In vivo regulation of plasma platelet-activating factor acetylhydrolase during the acute phase response. American Journal of Physiology. 277:R94-R103. (1999)
Miller EN, Rupp AL, Lindberg MK, Wiese TJ. Tissue distribution of L-fucokinase in rodents. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology. 140:513-520. (2005)
Mizuno Y, Thompson TG, Guyon JR, Lidov HG, Brosius M, Imamura M, Ozawa E, Watkins SC, Kunkel LM. Desmuslin, an intermediate filament protein that interacts with alpha -dystrobrevin and desmin. Proceedings of National Academy of Science of the United States of America. 98:6156-6161. (2001)
Nadeau S. Rivest S. Role of microglia-derived tumor necrosis factor in mediating CD14 transcription and nuclear factor κ B activity in the brain during endotoxemia. Journal of Neuroscience. 20:3456-3468. (2000)
Nadeau S and Rivest S. Endotoxemia prevents the cerebral inflammatory wave induced by intraparenchymal lipopolysaccharide injection: role of glucocorticoids and CD14. Journal of Immunology. 169:3370-3381. (2002)
Nilsson C., Lindvall-Axelsson M, and Owman C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Research - Brain Research Reviews. 17:109-138. (1992)
Ohe Y, Ishikawa K, Itoh Z, Tatemoto K. Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. Journal of Neurochemistry. 67:964-971. (1996)
Park KW, Lee DY, Joe EH, Kim SU, Jin BK. Neuroprotective role of microglia expressing interleukin-4. Journal of Neuroscience Research. 81:397-402. (2005)
Perry VH. A review of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. Journal of Neuroimmunology. 90:113-121. (1998)
Puchades M, Hansson SF, Nilsson CL, Andreasen N, Blennow K, Davidsson P. Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer's disease. Brain Research. Molecular Brain Research. 118:140-146. (2003)
Qu W, Bradbury JA, Tsao CC, Maronpot R, Harry GJ, Parker CE, Davis LS, Breyer MD, Waalkes MP, Falck JR, Chen J, Rosenberg RL, Zeldin DC. Cytochrome P450 CYP2J9, a new mouse arachidonic acid omega-1 hydroxylase predominantly expressed in brain. Journal of Biological Chemistry. 276:25467-25479. (2001)
Quistad GB, Fisher KJ, Owen SC, Klintenberg R, Casida JE. Platelet-activating factor acetylhydrolase: selective inhibition by potent n-alkyl methylphosphonofluoridates. Toxicology and Applied Pharmacology. 205:149-156. (2005)
Redwine JM, Evans CF. Markers of central nervous system glia and neurons in vivo during normal and pathological conditions. (Dietzschold B and Richt JA, Ed.), pp.119-134. Springer, New York. (2002)
Rohlff C. Proteomics in neuropsychiatric disorders. The International Journal of Neuropsychopharmacology. 4:93-102. (2000)
Seehusen DA, Reeves MM, and Fomin DA. Cerebrospinal fluid analysis. American Family Physician. 68:1103-1108. (2003)
Smith QR. The blood-brain barrier and the regulation of amino acid uptake and availability to brain. Advances in Experimental Medicine and Biology. 291:55-71. (1991)
Stahel PF, Morganti-Kossmann MC, Kossmann T. The role of the complement system in traumatic brain injury. Brain Research - Brain Research Reviews. 27:243-256. (1998)
Svetlov SI, Sturm E, Olson MS, Crawford JM. Hepatic regulation of platelet-activating factor acetylhydrolase and lecithin: cholesterol acyltransferase biliary and plasma output in rats exposed to bacterial lipopolysaccharide. Hepatology. 30:128-136. (1999)
van Beek J, Elward K, Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Annals of the New York Academy of Sciences. 992:56-71. (2003)
Wenner BR, Lovell MA, Lynn BC. Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. Journal of Proteome Research. 3:97-103. (2004)
Wiltfang J, Otto M, Baxter HC, Bodemer M, Steinacker P, Bahn E, Zerr I, Kornhuber J, Kretzschmar HA, Poser S, Ruther E, Aitken A. Isoform pattern of 14-3-3 proteins in the cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Journal of Neurochemistry. 73:2485-2490. (1999)
Xaio H, Banks WA, Niehoff ML, Morley JE. Effect of LPS on the permeability of the blood-brain barrier to insulin. Brain Research. 896:36-42. (2001)
Yuan X, Russell T, Wood G, Desiderio DM. Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis. 23:1185-1196. (2002)
Zhang J, Goodlett DR, Peskind ER, Quinn JF, Zhou Y, Wang Q, Pan C, Yi E, Eng J, Aebersold RH, Montine TJ. Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiology of Aging. 26:207-227. (2005)
Zhang J, Goodlett DR, Quinn JF, Peskind E, Kaye JA, Zhou Y, Pan C, Yi E, Eng J, Wang Q, Aebersold RH, Montine TJ. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. Journal of Alzheimer’s Disease. 7:125-133. (2005)
Zheng PP, Luider TM, Pieters R, Avezaat CJ, van den Bent MJ, Sillevis Smitt PA, Kros JM. Identification of tumor-related proteins by proteomic analysis of cerebrospinal fluid from patients with primary brain tumors. Journal of Neuropathology and Experimental Neurology. 62:855-862. (2003)
Zheng W, Shen H, Blaner WS, Zhao Q, Ren W, Graziano JH. Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus. Toxicology and Applied Pharmacology. 139:445-450. (1996)
校內:2105-06-21公開