| 研究生: |
莊純瑋 Chuang, Chung-Wei |
|---|---|
| 論文名稱: |
成長氮化鎵、氮化銦鎵及氮化鋁鎵奈米晶體應用於發光二極體 Growth of Gallium Nitride, Indium Gallium Nitride and Aluminum Gallium Nitride Nanocrystals for Light-emitting Diode Applications |
| 指導教授: |
洪昭南
Hong, Chau-Nan Franklin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積法 、奈米柱 、氮化鎵 、氮化銦鎵 、氮化鋁鎵 、雙異質接面 、單一量子井 、發光二極體 |
| 外文關鍵詞: | plasma-enhanced chemical vapor deposition, nanorods, gallium nitride, indium gallium nitride, aluminum gallium nitride, double heterojunction, single quantum well, light-emitting diodes |
| 相關次數: | 點閱:153 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氮化鎵具有極佳之光電特性,常用以製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。另外,一維奈米結構具有高比表面積與低缺陷濃度之獨特特性,已廣泛地應用於各種光電元件之製作。而本研究將結合氮化鎵與一維奈米結構之優勢,以本實驗室自行開發之爐管型電漿輔助化學氣相沉積系統,成長一維氮化鎵奈米結構。本研究成長氮化鎵材料採用自組裝之成長機制,以鎵金屬作為前驅物、以氮氣作為載流氣體去成長氮化鎵。
本實驗室已於先前的研究中,成功在Si基板及c-Sapphire基板上,成長出垂直於基板表面之氮化鎵奈米柱,並藉由掃描式電子顯微鏡、穿透式電子顯微鏡、顯微光致激發光譜儀,驗證其為六角形晶體、c-plane成長方向、低缺陷濃度且能隙約為3.42eV,並製作成以氮化鎵奈米柱為主體的發光二極體。
然而,為了調整氮化鎵奈米柱為主體的發光二極體之放光波長(365nm)到可見光區,而且使電子與電洞復合機率提升,故本研究藉由銦摻雜於氮化鎵晶體以形成氮化銦鎵晶體,並且藉由銦的組成百分比去調控能隙大小與放光波長,同時將氮化銦鎵薄膜層成長在p型與n型氮化鎵之間,形成單一量子井去侷限載子,以提高電子與電洞復合之機率,進一步增加發光二極體的發光效率。用銦金屬和鎵金屬作為前驅物、氮氣和氯氣作為載流氣體、以氫氣為輔助氣體,在相對低溫下成長氮化銦鎵晶體於氮化鎵奈米柱上,並藉由X光繞射儀去判別氮化銦鎵之生成與其能隙及放光波長。
並接續於氮化銦鎵晶體上成長p型氮化鎵晶體,然而為了避免低溫成長之氮化銦鎵晶體在成長p型氮化鎵時分解。故仍在相對低溫下,以鎵金屬和氮化鎂作為前驅物、氮氣和氯氣作為載流氣體,去成長p型氮化鎵晶體,藉由Micro-PL去判別p型氮化鎵之生成與其能隙及放光波長。
另一方面,為了避免載子跑到p-GaN/ InGaN/n-GaN的奈米柱結構之表面,與表面缺陷結合造成非輻射復合,故本研究在奈米柱結構的表面成長一層氮化鋁鎵晶體,作為奈米柱結構的表面保護層,以減少載子之損失,將能增加發光二極體的發光效率。在相對低溫下,以鋁金屬和鎵金屬作為前驅物、氮氣和氯氣作為載流氣體、以氫氣為輔助氣體去成長氮化鋁鎵晶體,並藉由XRD去判別氮化鋁鎵之生成。
This research is involving of five parts. They are sequentially the growth of GaN nanorods without doping, the growth of n-GaN nanorods with doping SiH4, Cl2-assisted InGaN growth, Cl2-assisted p-GaN growth with doping Mg3N2 and Cl2-assisted AlGaN growth. For GaN and n-GaN, high crystal quality as well as good uniformity of quality and nanorods’ density could be seen in PL and SEM. Then p-GaN epitaxial film was grown at 505℃ with appearance of characteristic peak around 425 nm in PL. On the other hand, InGaN epitaxial film was grown at 505℃ with 16% atomic indium estimated by XRD. Furthermore, AlGaN epitaxial film was grown at 600℃ with 68% atomic aluminum estimated by XRD.
[1] http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3
[2] http://www.energystar.gov/index.cfm?c=products.pr_pie
[3] 史光國,“半導體發光二極體及固體照明”,全華圖書,台灣(2010)
[4] http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html
[5] http://en.wikipedia.org/wiki/Graphene
[6] W. Lu, P. Xie, C. M. Lieber, "Nanowire transistor performance limits and applications", Electron Devices, IEEE Transactions on, Vol. 55, No. 11, pp. 2859-76 (2008).
[7] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes", Nano Lett, Vol. 5, No. 11, pp. 2287-91 (2005).
[8] M. A. Zimmler, F. Capasso, S. Müller, C. Ronning, "Optically pumped nanowire lasers: invited review", Semiconductor Science and Technology, Vol. 25, No. 2, pp. 024001 (2010).
[9] B. Tian, T. J. Kempa, C. M. Lieber, "Single nanowire photovoltaics", Chemical Society Reviews, Vol. 38, No. 1, pp. 16-24 (2009).
[10] E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. Mcgehee, "Nanowire Solar Cells", Annual Review of Materials Research, Vol. 41, No. 1, pp. 269-95 (2011).
[11] V. Dobrokhotov, D. N. Mcilroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, et al., "Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles", Journal of Applied Physics, Vol. 99, No. 10, pp. 104302 (2006).
[12] A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, "Nanowire-Based Electrochemical Biosensors", Electroanalysis, Vol. 18, No. 6, pp. 533-50 (2006).
[13] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, et al., "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays", Nano Lett, Vol. 4, No. 6, pp. 1059-62 (2004).
[14] C. Skierbiszewski, M. Siekacz, H. Turski, G. Muziol, M. Sawicka, P. Wolny, et al., "True-Blue Nitride Laser Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy", Applied Physics Express, Vol. 5, No. 11, pp. 112103 (2012).
[15] K. Keem, H. Kim, G.-T. Kim, J. S. Lee, B. Min, K. Cho, et al., "Photocurrent in ZnO nanowires grown from Au electrodes", Applied Physics Letters, Vol. 84, No. 22, pp. 4376 (2004).
[16] Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, "GaInN/GaN p-i-n light-emitting solar cells", physica status solidi (c), Vol. 7, No. 10, pp. 2382-5 (2010).
[17] X. Wang, X. Wang, H. Jia, Z. Xing, H. Chen, "Recent progress in single chip white light-emitting diodes with the InGaN underlying layer", Science China Physics, Mechanics and Astronomy, Vol. 53, No. 3, pp. 445-8 (2010).
[18] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)", Japanese Journal of Applied Physics, Vol. 28, No. 12A, pp. L2112 (1989).
[19] S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, "Hole compensation mechanism of p-type GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 5R, pp. 1258 (1992).
[20] C. W. Chin, F. K. Yam, K. P. Beh, Z. Hassan, M. A. Ahmad, Y. Yusof, et al., "The growth of heavily Mg-doped GaN thin film on Si substrate by molecular beam epitaxy", Thin Solid Films, Vol. 520, No. 2, pp. 756-60 (2011).
[21] A. Kikuchi, M. Tada, K. Miwa, K. Kishino, "Growth and characterization of InGaN/GaN nanocolumn LED", Book Growth and characterization of InGaN/GaN nanocolumn LED, International Society for Optics and Photonics, pp. 612905--8 (2006).
[22] K. G. Eyink, D. L. Huffaker, F. Szmulowicz, "Quantum Dots, Particles, and Nanoclusters III" (2006).
[23] 郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書,台灣,p.52 (2013)
[24] S. Nakamura, S. Pearton, G. Fasol, "The blue laser diode: the complete story", Springer Science & Business Media (2013).
[25] http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
[26] http://en.wikipedia.org/wiki/Crystal_structure
[27] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, "Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe", John Wiley & Sons (2001).
[28] D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy", Applied Physics Letters, Vol. 77, No. 10, pp. 1464 (2000).
[29] C. Van De Walle, J. Neugebauer, C. Stampfl, "of Book: Properties, processing and applications of gallium nitride and related semiconductors", Inspec (1999).
[30] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films", Applied Physics Letters, Vol. 77, No. 21, pp. 3373 (2000).
[31] http://www.mem.com.tw/article_content.asp?sn=1208310013
[32] H. Morkoc, "Nitride semiconductors and devices", Springer Science & Business Media (2013).
[33] S. Nakamura, "GaN growth using GaN buffer layer", Japanese Journal of Applied Physics, Vol. 30, No. 10A, pp. L1705 (1991).
[34] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Vd Hart, et al., "Size-dependent photoconductivity in MBE-grown GaN-nanowires", Nano Lett, Vol. 5, No. 5, pp. 981-4 (2005).
[35] N. A. Sanford, P. T. Blanchard, K. A. Bertness, L. Mansfield, J. B. Schlager, A. W. Sanders, et al., "Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy", Journal of Applied Physics, Vol. 107, No. 3, pp. 034318 (2010).
[36] T. Stoica, R. Calarco, "Doping of III-nitride nanowires grown by molecular beam epitaxy", Selected Topics in Quantum Electronics, IEEE Journal of, Vol. 17, No. 4, pp. 859-68 (2011).
[37] K. Jeganathan, R. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grutzmacher, et al., "Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires", Journal of Applied Physics, Vol. 105, No. 12, pp. 123707 (2009).
[38] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, "Gallium nitride nanowire nanodevices", Nano Lett, Vol. 2, No. 2, pp. 101-4 (2002).
[39] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., "Modification of GaN(0001) growth kinetics by Mg doping", Applied Physics Letters, Vol. 84, No. 14, pp. 2554 (2004).
[40] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 2B, pp. L139 (1992).
[41] W. Götz, N. Johnson, D. Bour, M. D. Mccluskey, E. Haller, "Local vibrational modes of the Mg–H acceptor complex in GaN", Applied Physics Letters, Vol. 69, No. 24, pp. 3725-7 (1996).
[42] H. Harima, T. Inoue, S. Nakashima, M. Ishida, M. Taneya, "Local vibrational modes as a probe of activation process in p-type GaN", Applied Physics Letters, Vol. 75, pp. 1383 (1999).
[43] E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, M. A. Reed, "The effect of Mg doping on GaN nanowires", Nanotechnology, Vol. 17, No. 23, pp. 5735-9 (2006).
[44] G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al., "Current rectification in a single GaN nanowire with a well-defined p–n junction", Applied Physics Letters, Vol. 83, No. 8, pp. 1578 (2003).
[45] Z. Zhong, F. Qian, D. Wang, C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices", Nano Lett, Vol. 3, No. 3, pp. 343-6 (2003).
[46] J. R. Soulen, P. Sthapitanonda, J. L. Margrave, "Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2", The Journal of Physical Chemistry, Vol. 59, No. 2, pp. 132-6 (1955).
[47] D. Zubia, S. D. Hersee, "Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials", Journal of Applied Physics, Vol. 85, No. 9, pp. 6492 (1999).
[48] A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting", physica status solidi (c), Vol. 8, No. 7-8, pp. 2296-301 (2011).
[49] S. Li, A. Waag, "GaN based nanorods for solid state lighting", Journal of Applied Physics, Vol. 111, No. 7, pp. 071101 (2012).
[50] H. J. Fan, P. Werner, M. Zacharias, "Semiconductor nanowires: from self‐organization to patterned growth", small, Vol. 2, No. 6, pp. 700-17 (2006).
[51] G. Seryogin, I. Shalish, W. Moberlychan, V. Narayanamurti, "Catalytic hydride vapour phase epitaxy growth of GaN nanowires", Nanotechnology, Vol. 16, No. 10, pp. 2342-5 (2005).
[52] J. Li, C. Lu, B. Maynor, S. Huang, J. Liu, "Controlled growth of long GaN nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques", Chemistry of materials, Vol. 16, No. 9, pp. 1633-6 (2004).
[53] C. Y. Nam, J. Y. Kim, J. E. Fischer, "Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth", Applied Physics Letters, Vol. 86, No. 19, pp. 193112 (2005).
[54] R. Wagner, W. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physics Letters, Vol. 4, No. 5, pp. 89-90 (1964).
[55] B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, "Quasi-aligned single-crystalline GaN nanowire arrays", Applied Physics Letters, Vol. 87, No. 7, pp. 073106 (2005).
[56] Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen, et al., "Controllable Synthesis of Vertically Aligned p‐Type GaN Nanorod Arrays on n‐Type Si Substrates for Heterojunction Diodes", Advanced Functional Materials, Vol. 18, No. 21, pp. 3515-22 (2008).
[57] W.-C. Hou, L.-Y. Chen, W.-C. Tang, F. C. N. Hong, "Control of Seed Detachment in Au-Assisted GaN Nanowire Growths", Crystal Growth & Design, Vol. 11, No. 4, pp. 990-4 (2011).
[58] W.-C. Hou, L.-Y. Chen, F. C.-N. Hong, "Fabrication of gallium nitride nanowires by nitrogen plasma", Diamond and Related Materials, Vol. 17, No. 7-10, pp. 1780-4 (2008).
[59] W. C. Hou, F. C. Hong, "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires", Nanotechnology, Vol. 20, No. 5, pp. 055606 (2009).
[60] W.-C. Hou, T.-H. Wu, W.-C. Tang, F. C.-N. Hong, "Nucleation control for the growth of vertically aligned GaN nanowires", Nanoscale research letters, Vol. 7, No. 1, pp. 1-6 (2012).
[61] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang, "Watching GaN nanowires grow", Nano Lett, Vol. 3, No. 6, pp. 867-9 (2003).
[62] V. Purushothaman, V. Ramakrishnan, K. Jeganathan, "Interplay of VLS and VS growth mechanism for GaN nanowires by a self-catalytic approach", RSC Advances, Vol. 2, No. 11, pp. 4802 (2012).
[63] J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, L. J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires", Journal of Materials Chemistry, Vol. 19, No. 7, pp. 849-57 (2009).
[64] S. Kodambaka, J. Tersoff, M. Reuter, F. Ross, "Germanium nanowire growth below the eutectic temperature", Science, Vol. 316, No. 5825, pp. 729-32 (2007).
[65] C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, et al., "Direct comparison of catalyst-free and catalyst-induced GaN nanowires", Nano Research, Vol. 3, No. 7, pp. 528-36 (2010).
[66] R. Liu, A. Bell, F. Ponce, C. Chen, J. Yang, M. A. Khan, "Luminescence from stacking faults in gallium nitride", Applied Physics Letters, Vol. 86, No. 2, pp. 1908 (2005).
[67] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, D. Hommel, "Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition", Journal of Applied Physics, Vol. 98, No. 9, pp. 093519 (2005).
[68] J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Cheon, T. Joo, et al., "Photoluminescent characteristics of Ni-catalyzed GaN nanowires" (2006).
[69] C. ChèZe, L. Geelhaar, B. Jenichen, H. Riechert, "Different growth rates for catalyst-induced and self-induced GaN nanowires", Applied Physics Letters, Vol. 97, No. 15, pp. 153105 (2010).
[70] J. Ristić, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy", Journal of Crystal Growth, Vol. 310, No. 18, pp. 4035-45 (2008).
[71] M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, et al., "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)", Journal of Crystal Growth, Vol. 183, No. 1, pp. 23-30 (1998).
[72] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, K. Kishino, "Self-organization of GaN/Al 0.18 Ga 0.82 N multi-layer nano-columns on (0001) Al 2 O 3 by RF molecular beam epitaxy for fabricating GaN quantum disks", Journal of Crystal Growth, Vol. 189, pp. 138-41 (1998).
[73] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, A. V. Davydov, "Spontaneously grown GaN and AlGaN nanowires", Journal of Crystal Growth, Vol. 287, No. 2, pp. 522-7 (2006).
[74] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. LüTh, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)", Applied Physics Letters, Vol. 90, No. 12, pp. 123117 (2007).
[75] K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires", Journal of Crystal Growth, Vol. 300, No. 1, pp. 94-9 (2007).
[76] http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
[77] 郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書,台灣,p.81 (2013)
[78] M. Grundmann, J. Haaheim, A. Moshar, J. Summers, "Blue InGaN quantum well LED fabrication", University of California, Santa Barbara, CA (2002).
[79] T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach", Nature materials, Vol. 6, No. 12, pp. 951-6 (2007).
[80] 歐哲先,“氮化鎵/氮化銦鎵奈米晶體之成長與元件製作”,國立成功大學化學工程研究所碩士論文,民國102年
[81] H. Sekiguchi, K. Kishino, A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate", Applied Physics Letters, Vol. 96, No. 23, pp. 231104 (2010).
[82] http://www.veeco.com.tw/
[83] F. K. Yam, Z. Hassan, "InGaN: An overview of the growth kinetics, physical properties and emission mechanisms", Superlattices and Microstructures, Vol. 43, No. 1, pp. 1-23 (2008).
[84] H. Komaki, R. Katayama, K. Onabe, M. Ozeki, T. Ikari, "Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE", Journal of Crystal Growth, Vol. 305, No. 1, pp. 12-8 (2007).
[85] A. L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, et al., "GaN-based nanowires: From nanometric-scale characterization to light emitting diodes", physica status solidi (a), Vol. 207, No. 6, pp. 1425-7 (2010).
[86] G. Tourbot, C. Bougerol, A. Grenier, M. Den Hertog, D. Sam-Giao, D. Cooper, et al., "Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE", Nanotechnology, Vol. 22, No. 7, pp. 075601 (2011).
[87] T. Tabata, J. Paek, Y. Honda, M. Yamaguchi, H. Amano, "Growth of InGaN nanowires on a (111)Si substrate by RF-MBE", physica status solidi (c), Vol. 9, No. 3-4, pp. 646-9 (2012).
[88] A. Kikuchi, M. Tada, K. Miwa, K. Kishino, "Growth and characterization of InGaN/GaN nanocolumn LED", Book Growth and characterization of InGaN/GaN nanocolumn LED, International Society for Optics and Photonics, pp. 612905--8 (2006).
[89] H. P. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, et al., "p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111)", Nano Lett, Vol. 11, No. 5, pp. 1919-24 (2011).
[90] H. Seo, L. Tu, Y. Lin, C. Ho, Q. Chen, L. Yuan, et al., "p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance", Applied Physics Letters, Vol. 94, No. 20, pp. 1907 (2009).
[91] C.-Y. Chen, C. Hsieh, C.-H. Liao, W.-L. Chung, H.-T. Chen, W. Cao, et al., "Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode", Optics express, Vol. 20, No. 10, pp. 11321-35 (2012).
[92] H. Yin, X. Wang, J. Ran, G. Hu, L. Zhang, H. Xiao, et al., "High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system", Journal of Semiconductors, Vol. 32, No. 3, pp. 033002 (2011).
[93] R. Martin, P. Edwards, R. Pecharroman-Gallego, C. Liu, C. Deatcher, I. Watson, et al., "Light emission ranging from blue to red from a series of InGaN/GaN single quantum wells", Journal of Physics D: Applied Physics, Vol. 35, No. 7, pp. 604 (2002).
[94] 吳東憲,“以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用”,國立成功大學化學工程研究所博士論文,民國101年
[95] D. B. Williams, A. B. Carter, "Transmission Electron Microscopy", Plenum Press, New York, Vol. 1, pp. 7 (1996).
[96] S. Milita, M. Servidori, "X-ray rocking-curve analysis of crystals with buried amorphous layers. Case of ion-implanted silicon", Journal of applied crystallography, Vol. 28, No. 6, pp. 666-72 (1995).
[97] K. K. Smith, "Photoluminescence of semiconductor materials", Thin Solid Films, Vol. 84, No. 2, pp. 171-82 (1981).
[98] J. P. Wolfe, A. Mysyrowicz, "Excitonic matter", Scientific American, Vol. 250, pp. 98-107 (1984).
[99] J. I. Pankove, "Optical Process in Semiconductors", Dover Pub- lications Inc., New York, pp. 15-22 (1975).
校內:2021-08-15公開