簡易檢索 / 詳目顯示

研究生: 莊純瑋
Chuang, Chung-Wei
論文名稱: 成長氮化鎵、氮化銦鎵及氮化鋁鎵奈米晶體應用於發光二極體
Growth of Gallium Nitride, Indium Gallium Nitride and Aluminum Gallium Nitride Nanocrystals for Light-emitting Diode Applications
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 148
中文關鍵詞: 電漿輔助化學氣相沉積法奈米柱氮化鎵氮化銦鎵氮化鋁鎵雙異質接面單一量子井發光二極體
外文關鍵詞: plasma-enhanced chemical vapor deposition, nanorods, gallium nitride, indium gallium nitride, aluminum gallium nitride, double heterojunction, single quantum well, light-emitting diodes
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鎵具有極佳之光電特性,常用以製作發光二極體、雷射二極體、太陽能電池、光感測元件、高功率電晶體以及高載子遷移率電晶體。另外,一維奈米結構具有高比表面積與低缺陷濃度之獨特特性,已廣泛地應用於各種光電元件之製作。而本研究將結合氮化鎵與一維奈米結構之優勢,以本實驗室自行開發之爐管型電漿輔助化學氣相沉積系統,成長一維氮化鎵奈米結構。本研究成長氮化鎵材料採用自組裝之成長機制,以鎵金屬作為前驅物、以氮氣作為載流氣體去成長氮化鎵。
    本實驗室已於先前的研究中,成功在Si基板及c-Sapphire基板上,成長出垂直於基板表面之氮化鎵奈米柱,並藉由掃描式電子顯微鏡、穿透式電子顯微鏡、顯微光致激發光譜儀,驗證其為六角形晶體、c-plane成長方向、低缺陷濃度且能隙約為3.42eV,並製作成以氮化鎵奈米柱為主體的發光二極體。
    然而,為了調整氮化鎵奈米柱為主體的發光二極體之放光波長(365nm)到可見光區,而且使電子與電洞復合機率提升,故本研究藉由銦摻雜於氮化鎵晶體以形成氮化銦鎵晶體,並且藉由銦的組成百分比去調控能隙大小與放光波長,同時將氮化銦鎵薄膜層成長在p型與n型氮化鎵之間,形成單一量子井去侷限載子,以提高電子與電洞復合之機率,進一步增加發光二極體的發光效率。用銦金屬和鎵金屬作為前驅物、氮氣和氯氣作為載流氣體、以氫氣為輔助氣體,在相對低溫下成長氮化銦鎵晶體於氮化鎵奈米柱上,並藉由X光繞射儀去判別氮化銦鎵之生成與其能隙及放光波長。
    並接續於氮化銦鎵晶體上成長p型氮化鎵晶體,然而為了避免低溫成長之氮化銦鎵晶體在成長p型氮化鎵時分解。故仍在相對低溫下,以鎵金屬和氮化鎂作為前驅物、氮氣和氯氣作為載流氣體,去成長p型氮化鎵晶體,藉由Micro-PL去判別p型氮化鎵之生成與其能隙及放光波長。
    另一方面,為了避免載子跑到p-GaN/ InGaN/n-GaN的奈米柱結構之表面,與表面缺陷結合造成非輻射復合,故本研究在奈米柱結構的表面成長一層氮化鋁鎵晶體,作為奈米柱結構的表面保護層,以減少載子之損失,將能增加發光二極體的發光效率。在相對低溫下,以鋁金屬和鎵金屬作為前驅物、氮氣和氯氣作為載流氣體、以氫氣為輔助氣體去成長氮化鋁鎵晶體,並藉由XRD去判別氮化鋁鎵之生成。

    This research is involving of five parts. They are sequentially the growth of GaN nanorods without doping, the growth of n-GaN nanorods with doping SiH4, Cl2-assisted InGaN growth, Cl2-assisted p-GaN growth with doping Mg3N2 and Cl2-assisted AlGaN growth. For GaN and n-GaN, high crystal quality as well as good uniformity of quality and nanorods’ density could be seen in PL and SEM. Then p-GaN epitaxial film was grown at 505℃ with appearance of characteristic peak around 425 nm in PL. On the other hand, InGaN epitaxial film was grown at 505℃ with 16% atomic indium estimated by XRD. Furthermore, AlGaN epitaxial film was grown at 600℃ with 68% atomic aluminum estimated by XRD.

    中文摘要 ………………………………………………………… I 英文延伸摘要 …………………………………………………… III 誌謝 ……………………………………………………………… IX 目錄 ……………………………………………………………… X 表目錄 …………………………………………………………… XV 圖目錄 …………………………………………………………… XVII 第一章 緒論 ……………………………………………………… 1 1-1 前言 ……………………………………………………… 1 1-2 奈米材料 ………………………………………………… 3 1-3 研究動機 ………………………………………………… 5 第二章 理論基礎與文獻回顧 …………………………………… 8 2-1 氮化鎵(GaN)之結構與特性 …………………………… 8 2-1-1 氮化鎵(GaN)之基本性質 ………………………… 9 2-1-2 成長氮化鎵(GaN)之基板 ………………………… 13 2-1-3 n型氮化鎵(n-GaN) ……………………………… 15 2-1-4 p型氮化鎵(p-GaN) ……………………………… 18 2-2 一維氮化鎵(GaN)奈米結構之成長 ……………………… 21 2-2-1 觸媒輔助成長法 …………………………………… 22 2-2-1-1氣–液–固(VLS)機制成長氮化鎵(GaN)奈米柱 23 2-2-1-2氣–固–固(VSS)機制成長氮化鎵(GaN)奈米柱 25 2-2-2 自組裝成長氮化鎵(GaN)奈米柱 ………………… 27 2-3 p-n接面 ………………………………………………… 30 2-3-1 雙異質接面 ………………………………………… 32 2-4 氮化銦鎵(InGaN)之基本性質 …………………………… 34 2-5 電漿理論 ………………………………………………… 41 2-5-1 電漿定義與特性 …………………………………… 41 2-5-2 電介質放電 ………………………………………… 47 第三章 實驗步驟與方法 ………………………………………… 50 3-1 實驗流程 ………………………………………………… 50 3-2 實驗設備 ………………………………………………… 51 3-2-1 爐管型電漿輔助化學氣相沉積(PECVD)系統 …… 51 3-2-2 六段加熱區間高溫爐 ……………………………… 52 3-2-3 石英管反應腔體 …………………………………… 52 3-2-4 基板載台、反應前驅物容器與氣體導管 ………… 53 3-2-5 電漿電源供應器 …………………………………… 53 3-2-6 抽氣及真空系統 …………………………………… 53 3-2-7 真空管件材料 ……………………………………… 53 3-2-8 壓力監控系統 …………………………………… 54 3-2-9 氣體流量控制系統 ……………………………… 54 3-2-10 系統示意圖與相對位置 ………………………… 55 3-3 實驗材料 ………………………………………………… 56 3-3-1 實驗氣體 ………………………………………… 56 3-3-2 基板材料 ………………………………………… 56 3-3-3 反應前驅物 ……………………………………… 57 3-3-4 化學藥品 ………………………………………… 57 3-4 奈米柱與晶體成長實驗步驟 …………………………… 58 3-4-1 以自組裝機制成長氮化鎵(GaN)奈米柱 ………… 58 3-4-1-1 反應前驅物前處理 ………………………… 58 3-4-1-2 基板前處理 ………………………………… 58 3-4-1-3 以爐管型PECVD系統成長氮化鎵(GaN)奈米 柱 ………………………………………… 59 3-4-2 以自組裝機制成長n型氮化鎵(n-GaN)奈米柱 … 60 3-4-2-1 反應前驅物前處理 ………………………… 60 3-4-2-2 基板前處理 ………………………………… 60 3-4-2-3 以爐管型PECVD系統成長n型氮化鎵(n-GaN) 奈米柱 …………………………………… 61 3-4-3 以自組裝機制成長氮化銦鎵(InGaN)晶體 ……… 62 3-4-3-1 反應前驅物前處理 ………………………… 62 3-4-3-2 基板前處理 ………………………………… 63 3-4-3-3 以爐管型PECVD系統成長氮化銦鎵(InGaN)晶 體 ………………………………………… 63 3-4-4 以自組裝機制成長p型氮化鎵(p-GaN)晶體 …… 65 3-4-4-1 反應前驅物前處理 ………………………… 65 3-4-4-2 基板前處理 ………………………………… 65 3-4-4-3 以爐管型PECVD系統成長p型氮化鎵(p-GaN) 晶體 ……………………………………… 65 3-4-5 以自組裝機制成長氮化鋁鎵(AlGaN)晶體 ……… 67 3-4-5-1 反應前驅物前處理 ………………………… 67 3-4-5-2 基板前處理 ………………………………… 67 3-4-5-3 以爐管型PECVD系統成長氮化鋁鎵(AlGaN)晶 體 ………………………………………… 67 3-5 分析儀器 ………………………………………………… 69 3-5-1 掃描式電子顯微鏡(SEM) ………………………… 69 3-5-2 能量散佈分析儀(XEDS) ………………………… 71 3-5-3 X光繞射分析儀 ………………………………… 72 3-5-3-1 X光繞射基本原理介紹 …………………… 72 3-5-3-2 X光繞射儀掃描模式 ……………………… 74 3-5-4 光致螢光光譜 ……………………………………… 77 第四章 結果與討論 ……………………………………………… 84 4-1 以自組裝機制成長氮化鎵(GaN)奈米柱 ………………… 84 4-2 以自組裝機制成長n型氮化鎵(n-GaN)奈米柱 ………… 91 4-3 氮化銦鎵(InGaN)晶體成長於氮化鎵奈米柱 …………… 97 4-4 p型氮化鎵(p-GaN)晶體成長於氮化鎵奈米柱 ……… 115 4-5 氮化鋁鎵(AlGaN)晶體成長於氮化鎵奈米柱 ………… 122 第五章 結果與未來展望 ………………………………………… 131 5-1 結論 ……………………………………………………… 131 5-2 未來展望 ………………………………………………… 135 參考文獻 ………………………………………………………… 139

    [1] http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3
    [2] http://www.energystar.gov/index.cfm?c=products.pr_pie
    [3] 史光國,“半導體發光二極體及固體照明”,全華圖書,台灣(2010)
    [4] http://www1.eere.energy.gov/buildings/ssl/sslbasics_whyssl.html
    [5] http://en.wikipedia.org/wiki/Graphene
    [6] W. Lu, P. Xie, C. M. Lieber, "Nanowire transistor performance limits and applications", Electron Devices, IEEE Transactions on, Vol. 55, No. 11, pp. 2859-76 (2008).
    [7] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, "Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes", Nano Lett, Vol. 5, No. 11, pp. 2287-91 (2005).
    [8] M. A. Zimmler, F. Capasso, S. Müller, C. Ronning, "Optically pumped nanowire lasers: invited review", Semiconductor Science and Technology, Vol. 25, No. 2, pp. 024001 (2010).
    [9] B. Tian, T. J. Kempa, C. M. Lieber, "Single nanowire photovoltaics", Chemical Society Reviews, Vol. 38, No. 1, pp. 16-24 (2009).
    [10] E. C. Garnett, M. L. Brongersma, Y. Cui, M. D. Mcgehee, "Nanowire Solar Cells", Annual Review of Materials Research, Vol. 41, No. 1, pp. 269-95 (2011).
    [11] V. Dobrokhotov, D. N. Mcilroy, M. G. Norton, A. Abuzir, W. J. Yeh, I. Stevenson, et al., "Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles", Journal of Applied Physics, Vol. 99, No. 10, pp. 104302 (2006).
    [12] A. K. Wanekaya, W. Chen, N. V. Myung, A. Mulchandani, "Nanowire-Based Electrochemical Biosensors", Electroanalysis, Vol. 18, No. 6, pp. 533-50 (2006).
    [13] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, et al., "High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays", Nano Lett, Vol. 4, No. 6, pp. 1059-62 (2004).
    [14] C. Skierbiszewski, M. Siekacz, H. Turski, G. Muziol, M. Sawicka, P. Wolny, et al., "True-Blue Nitride Laser Diodes Grown by Plasma-Assisted Molecular Beam Epitaxy", Applied Physics Express, Vol. 5, No. 11, pp. 112103 (2012).
    [15] K. Keem, H. Kim, G.-T. Kim, J. S. Lee, B. Min, K. Cho, et al., "Photocurrent in ZnO nanowires grown from Au electrodes", Applied Physics Letters, Vol. 84, No. 22, pp. 4376 (2004).
    [16] Y. Fujiyama, Y. Kuwahara, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, "GaInN/GaN p-i-n light-emitting solar cells", physica status solidi (c), Vol. 7, No. 10, pp. 2382-5 (2010).
    [17] X. Wang, X. Wang, H. Jia, Z. Xing, H. Chen, "Recent progress in single chip white light-emitting diodes with the InGaN underlying layer", Science China Physics, Mechanics and Astronomy, Vol. 53, No. 3, pp. 445-8 (2010).
    [18] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, "P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)", Japanese Journal of Applied Physics, Vol. 28, No. 12A, pp. L2112 (1989).
    [19] S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, "Hole compensation mechanism of p-type GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 5R, pp. 1258 (1992).
    [20] C. W. Chin, F. K. Yam, K. P. Beh, Z. Hassan, M. A. Ahmad, Y. Yusof, et al., "The growth of heavily Mg-doped GaN thin film on Si substrate by molecular beam epitaxy", Thin Solid Films, Vol. 520, No. 2, pp. 756-60 (2011).
    [21] A. Kikuchi, M. Tada, K. Miwa, K. Kishino, "Growth and characterization of InGaN/GaN nanocolumn LED", Book Growth and characterization of InGaN/GaN nanocolumn LED, International Society for Optics and Photonics, pp. 612905--8 (2006).
    [22] K. G. Eyink, D. L. Huffaker, F. Szmulowicz, "Quantum Dots, Particles, and Nanoclusters III" (2006).
    [23] 郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書,台灣,p.52 (2013)
    [24] S. Nakamura, S. Pearton, G. Fasol, "The blue laser diode: the complete story", Springer Science & Business Media (2013).
    [25] http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
    [26] http://en.wikipedia.org/wiki/Crystal_structure
    [27] M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur, "Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe", John Wiley & Sons (2001).
    [28] D. I. Florescu, V. M. Asnin, F. H. Pollak, A. M. Jones, J. C. Ramer, M. J. Schurman, et al., "Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy", Applied Physics Letters, Vol. 77, No. 10, pp. 1464 (2000).
    [29] C. Van De Walle, J. Neugebauer, C. Stampfl, "of Book: Properties, processing and applications of gallium nitride and related semiconductors", Inspec (1999).
    [30] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, et al., "Nanoindentation of epitaxial GaN films", Applied Physics Letters, Vol. 77, No. 21, pp. 3373 (2000).
    [31] http://www.mem.com.tw/article_content.asp?sn=1208310013
    [32] H. Morkoc, "Nitride semiconductors and devices", Springer Science & Business Media (2013).
    [33] S. Nakamura, "GaN growth using GaN buffer layer", Japanese Journal of Applied Physics, Vol. 30, No. 10A, pp. L1705 (1991).
    [34] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. Vd Hart, et al., "Size-dependent photoconductivity in MBE-grown GaN-nanowires", Nano Lett, Vol. 5, No. 5, pp. 981-4 (2005).
    [35] N. A. Sanford, P. T. Blanchard, K. A. Bertness, L. Mansfield, J. B. Schlager, A. W. Sanders, et al., "Steady-state and transient photoconductivity in c-axis GaN nanowires grown by nitrogen-plasma-assisted molecular beam epitaxy", Journal of Applied Physics, Vol. 107, No. 3, pp. 034318 (2010).
    [36] T. Stoica, R. Calarco, "Doping of III-nitride nanowires grown by molecular beam epitaxy", Selected Topics in Quantum Electronics, IEEE Journal of, Vol. 17, No. 4, pp. 859-68 (2011).
    [37] K. Jeganathan, R. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grutzmacher, et al., "Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires", Journal of Applied Physics, Vol. 105, No. 12, pp. 123707 (2009).
    [38] Y. Huang, X. Duan, Y. Cui, C. M. Lieber, "Gallium nitride nanowire nanodevices", Nano Lett, Vol. 2, No. 2, pp. 101-4 (2002).
    [39] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, et al., "Modification of GaN(0001) growth kinetics by Mg doping", Applied Physics Letters, Vol. 84, No. 14, pp. 2554 (2004).
    [40] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, "Thermal annealing effects on p-type Mg-doped GaN films", Japanese Journal of Applied Physics, Vol. 31, No. 2B, pp. L139 (1992).
    [41] W. Götz, N. Johnson, D. Bour, M. D. Mccluskey, E. Haller, "Local vibrational modes of the Mg–H acceptor complex in GaN", Applied Physics Letters, Vol. 69, No. 24, pp. 3725-7 (1996).
    [42] H. Harima, T. Inoue, S. Nakashima, M. Ishida, M. Taneya, "Local vibrational modes as a probe of activation process in p-type GaN", Applied Physics Letters, Vol. 75, pp. 1383 (1999).
    [43] E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, M. A. Reed, "The effect of Mg doping on GaN nanowires", Nanotechnology, Vol. 17, No. 23, pp. 5735-9 (2006).
    [44] G. Cheng, A. Kolmakov, Y. Zhang, M. Moskovits, R. Munden, M. A. Reed, et al., "Current rectification in a single GaN nanowire with a well-defined p–n junction", Applied Physics Letters, Vol. 83, No. 8, pp. 1578 (2003).
    [45] Z. Zhong, F. Qian, D. Wang, C. M. Lieber, "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices", Nano Lett, Vol. 3, No. 3, pp. 343-6 (2003).
    [46] J. R. Soulen, P. Sthapitanonda, J. L. Margrave, "Vaporization of inorganic substances: B2O3, TeO2 and Mg3N2", The Journal of Physical Chemistry, Vol. 59, No. 2, pp. 132-6 (1955).
    [47] D. Zubia, S. D. Hersee, "Nanoheteroepitaxy: The Application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials", Journal of Applied Physics, Vol. 85, No. 9, pp. 6492 (1999).
    [48] A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, et al., "The nanorod approach: GaN NanoLEDs for solid state lighting", physica status solidi (c), Vol. 8, No. 7-8, pp. 2296-301 (2011).
    [49] S. Li, A. Waag, "GaN based nanorods for solid state lighting", Journal of Applied Physics, Vol. 111, No. 7, pp. 071101 (2012).
    [50] H. J. Fan, P. Werner, M. Zacharias, "Semiconductor nanowires: from self‐organization to patterned growth", small, Vol. 2, No. 6, pp. 700-17 (2006).
    [51] G. Seryogin, I. Shalish, W. Moberlychan, V. Narayanamurti, "Catalytic hydride vapour phase epitaxy growth of GaN nanowires", Nanotechnology, Vol. 16, No. 10, pp. 2342-5 (2005).
    [52] J. Li, C. Lu, B. Maynor, S. Huang, J. Liu, "Controlled growth of long GaN nanowires from catalyst patterns fabricated by “dip-pen” nanolithographic techniques", Chemistry of materials, Vol. 16, No. 9, pp. 1633-6 (2004).
    [53] C. Y. Nam, J. Y. Kim, J. E. Fischer, "Focused-ion-beam platinum nanopatterning for GaN nanowires: Ohmic contacts and patterned growth", Applied Physics Letters, Vol. 86, No. 19, pp. 193112 (2005).
    [54] R. Wagner, W. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth", Applied Physics Letters, Vol. 4, No. 5, pp. 89-90 (1964).
    [55] B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, "Quasi-aligned single-crystalline GaN nanowire arrays", Applied Physics Letters, Vol. 87, No. 7, pp. 073106 (2005).
    [56] Y. B. Tang, X. H. Bo, C. S. Lee, H. T. Cong, H. M. Cheng, Z. H. Chen, et al., "Controllable Synthesis of Vertically Aligned p‐Type GaN Nanorod Arrays on n‐Type Si Substrates for Heterojunction Diodes", Advanced Functional Materials, Vol. 18, No. 21, pp. 3515-22 (2008).
    [57] W.-C. Hou, L.-Y. Chen, W.-C. Tang, F. C. N. Hong, "Control of Seed Detachment in Au-Assisted GaN Nanowire Growths", Crystal Growth & Design, Vol. 11, No. 4, pp. 990-4 (2011).
    [58] W.-C. Hou, L.-Y. Chen, F. C.-N. Hong, "Fabrication of gallium nitride nanowires by nitrogen plasma", Diamond and Related Materials, Vol. 17, No. 7-10, pp. 1780-4 (2008).
    [59] W. C. Hou, F. C. Hong, "Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires", Nanotechnology, Vol. 20, No. 5, pp. 055606 (2009).
    [60] W.-C. Hou, T.-H. Wu, W.-C. Tang, F. C.-N. Hong, "Nucleation control for the growth of vertically aligned GaN nanowires", Nanoscale research letters, Vol. 7, No. 1, pp. 1-6 (2012).
    [61] E. A. Stach, P. J. Pauzauskie, T. Kuykendall, J. Goldberger, R. He, P. Yang, "Watching GaN nanowires grow", Nano Lett, Vol. 3, No. 6, pp. 867-9 (2003).
    [62] V. Purushothaman, V. Ramakrishnan, K. Jeganathan, "Interplay of VLS and VS growth mechanism for GaN nanowires by a self-catalytic approach", RSC Advances, Vol. 2, No. 11, pp. 4802 (2012).
    [63] J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, L. J. Lauhon, "Alternative catalysts for VSS growth of silicon and germanium nanowires", Journal of Materials Chemistry, Vol. 19, No. 7, pp. 849-57 (2009).
    [64] S. Kodambaka, J. Tersoff, M. Reuter, F. Ross, "Germanium nanowire growth below the eutectic temperature", Science, Vol. 316, No. 5825, pp. 729-32 (2007).
    [65] C. Chèze, L. Geelhaar, O. Brandt, W. M. Weber, H. Riechert, S. Münch, et al., "Direct comparison of catalyst-free and catalyst-induced GaN nanowires", Nano Research, Vol. 3, No. 7, pp. 528-36 (2010).
    [66] R. Liu, A. Bell, F. Ponce, C. Chen, J. Yang, M. A. Khan, "Luminescence from stacking faults in gallium nitride", Applied Physics Letters, Vol. 86, No. 2, pp. 1908 (2005).
    [67] P. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, D. Hommel, "Emission properties of a-plane GaN grown by metal-organic chemical-vapor deposition", Journal of Applied Physics, Vol. 98, No. 9, pp. 093519 (2005).
    [68] J. Yoo, Y.-J. Hong, S. J. An, G.-C. Yi, B. Cheon, T. Joo, et al., "Photoluminescent characteristics of Ni-catalyzed GaN nanowires" (2006).
    [69] C. ChèZe, L. Geelhaar, B. Jenichen, H. Riechert, "Different growth rates for catalyst-induced and self-induced GaN nanowires", Applied Physics Letters, Vol. 97, No. 15, pp. 153105 (2010).
    [70] J. Ristić, E. Calleja, S. Fernández-Garrido, L. Cerutti, A. Trampert, U. Jahn, et al., "On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy", Journal of Crystal Growth, Vol. 310, No. 18, pp. 4035-45 (2008).
    [71] M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, et al., "The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN-and AlN-layers grown by molecular beam epitaxy on Si (1 1 1)", Journal of Crystal Growth, Vol. 183, No. 1, pp. 23-30 (1998).
    [72] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, K. Kishino, "Self-organization of GaN/Al 0.18 Ga 0.82 N multi-layer nano-columns on (0001) Al 2 O 3 by RF molecular beam epitaxy for fabricating GaN quantum disks", Journal of Crystal Growth, Vol. 189, pp. 138-41 (1998).
    [73] K. A. Bertness, A. Roshko, N. A. Sanford, J. M. Barker, A. V. Davydov, "Spontaneously grown GaN and AlGaN nanowires", Journal of Crystal Growth, Vol. 287, No. 2, pp. 522-7 (2006).
    [74] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. LüTh, "Mechanism of molecular beam epitaxy growth of GaN nanowires on Si(111)", Applied Physics Letters, Vol. 90, No. 12, pp. 123117 (2007).
    [75] K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, N. A. Sanford, "Nucleation conditions for catalyst-free GaN nanowires", Journal of Crystal Growth, Vol. 300, No. 1, pp. 94-9 (2007).
    [76] http://wanda.fiu.edu/teaching/courses/Modern_lab_manual/pn_junction.html
    [77] 郭浩中,賴芳儀,郭守義,“LED原理與應用”,五南圖書,台灣,p.81 (2013)
    [78] M. Grundmann, J. Haaheim, A. Moshar, J. Summers, "Blue InGaN quantum well LED fabrication", University of California, Santa Barbara, CA (2002).
    [79] T. Kuykendall, P. Ulrich, S. Aloni, P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach", Nature materials, Vol. 6, No. 12, pp. 951-6 (2007).
    [80] 歐哲先,“氮化鎵/氮化銦鎵奈米晶體之成長與元件製作”,國立成功大學化學工程研究所碩士論文,民國102年
    [81] H. Sekiguchi, K. Kishino, A. Kikuchi, "Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate", Applied Physics Letters, Vol. 96, No. 23, pp. 231104 (2010).
    [82] http://www.veeco.com.tw/
    [83] F. K. Yam, Z. Hassan, "InGaN: An overview of the growth kinetics, physical properties and emission mechanisms", Superlattices and Microstructures, Vol. 43, No. 1, pp. 1-23 (2008).
    [84] H. Komaki, R. Katayama, K. Onabe, M. Ozeki, T. Ikari, "Nitrogen supply rate dependence of InGaN growth properties, by RF-MBE", Journal of Crystal Growth, Vol. 305, No. 1, pp. 12-8 (2007).
    [85] A. L. Bavencove, G. Tourbot, E. Pougeoise, J. Garcia, P. Gilet, F. Levy, et al., "GaN-based nanowires: From nanometric-scale characterization to light emitting diodes", physica status solidi (a), Vol. 207, No. 6, pp. 1425-7 (2010).
    [86] G. Tourbot, C. Bougerol, A. Grenier, M. Den Hertog, D. Sam-Giao, D. Cooper, et al., "Structural and optical properties of InGaN/GaN nanowire heterostructures grown by PA-MBE", Nanotechnology, Vol. 22, No. 7, pp. 075601 (2011).
    [87] T. Tabata, J. Paek, Y. Honda, M. Yamaguchi, H. Amano, "Growth of InGaN nanowires on a (111)Si substrate by RF-MBE", physica status solidi (c), Vol. 9, No. 3-4, pp. 646-9 (2012).
    [88] A. Kikuchi, M. Tada, K. Miwa, K. Kishino, "Growth and characterization of InGaN/GaN nanocolumn LED", Book Growth and characterization of InGaN/GaN nanocolumn LED, International Society for Optics and Photonics, pp. 612905--8 (2006).
    [89] H. P. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, et al., "p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111)", Nano Lett, Vol. 11, No. 5, pp. 1919-24 (2011).
    [90] H. Seo, L. Tu, Y. Lin, C. Ho, Q. Chen, L. Yuan, et al., "p-GaN/InGaN/n-GaN pedestal nanorods: Effect of postgrowth annealing on the electrical performance", Applied Physics Letters, Vol. 94, No. 20, pp. 1907 (2009).
    [91] C.-Y. Chen, C. Hsieh, C.-H. Liao, W.-L. Chung, H.-T. Chen, W. Cao, et al., "Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode", Optics express, Vol. 20, No. 10, pp. 11321-35 (2012).
    [92] H. Yin, X. Wang, J. Ran, G. Hu, L. Zhang, H. Xiao, et al., "High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system", Journal of Semiconductors, Vol. 32, No. 3, pp. 033002 (2011).
    [93] R. Martin, P. Edwards, R. Pecharroman-Gallego, C. Liu, C. Deatcher, I. Watson, et al., "Light emission ranging from blue to red from a series of InGaN/GaN single quantum wells", Journal of Physics D: Applied Physics, Vol. 35, No. 7, pp. 604 (2002).
    [94] 吳東憲,“以電漿輔助化學氣相沉積法成長氮化鎵奈米柱於光電元件之應用”,國立成功大學化學工程研究所博士論文,民國101年
    [95] D. B. Williams, A. B. Carter, "Transmission Electron Microscopy", Plenum Press, New York, Vol. 1, pp. 7 (1996).
    [96] S. Milita, M. Servidori, "X-ray rocking-curve analysis of crystals with buried amorphous layers. Case of ion-implanted silicon", Journal of applied crystallography, Vol. 28, No. 6, pp. 666-72 (1995).
    [97] K. K. Smith, "Photoluminescence of semiconductor materials", Thin Solid Films, Vol. 84, No. 2, pp. 171-82 (1981).
    [98] J. P. Wolfe, A. Mysyrowicz, "Excitonic matter", Scientific American, Vol. 250, pp. 98-107 (1984).
    [99] J. I. Pankove, "Optical Process in Semiconductors", Dover Pub- lications Inc., New York, pp. 15-22 (1975).

    無法下載圖示 校內:2021-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE