| 研究生: |
邱冠豪 Chiu, Kuan-Hao |
|---|---|
| 論文名稱: |
應用微分再生核方法於多層疊合彈性與壓電材料板靜力分析 A Differential Reproducing Kernel Particle Method for the Static Analysis of Multilayered Elastic and Piezoelectric Plates |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 無網格方法 、適點方法 、再生核 、靜力分析 、彎矩 、壓電材料板 |
| 外文關鍵詞: | Point collocation, Meshless methods, Static, Bending, Piezoelectric plates, Reproducing kernels |
| 相關次數: | 點閱:93 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用微分再生核(DRKP)方法於簡支承多層疊合彈性與壓電材料板之靜力分析。有別於傳統文獻中之再生核方法,直接以近似形狀函數進行微分運算來獲得導函數相應之形狀函數;DRKP方法則以基底函數微分再生條件來決定高階導函數之形狀函數。本文應用廣義Hellinger-Reissner能量穩值原理,經由變分推衍程序獲得三維電彈力學Euler-Lagrange方程式和可能的邊界條件。依據DRKP適點方法,求解簡支承多層疊合彈性或壓電材料板受電場和彈性場外載重作用下的靜力行為。結果顯示DRKP方法是一種十分精準並且快速收歛的無網格方法。
A differential reproducing kernel particle (DRKP) method is proposed and developed for the analysis of simply supported, multilayered elastic and piezoelectric plates by following up the consistent concepts of reproducing kernel particle (RKP) method. Unlike the RKP method in which the shape functions for derivatives of the reproducing kernel (RK) approximants are obtained by directly taking the differentiation with respect to the shape functions of the RK approximants, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. On the basis of the extended Hellinger-Reissner principle, the Euler-Lagrange equations of three-dimensional piezoelectricity and the possible boundary conditions are derived. A point collocation method based on the present DRKP approximations is formulated for the static analysis of simply supported, multilayered elastic and piezoelectric plates under electro-mechanical loads. It is shown that the present DRKP method indeed is a fully meshless approach with excellent accuracy and fast convergence rate.
Atluri, S.N.; Cho, J.Y.; Kim, H.G. : Analysis of thin beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations. Comput. Mech., vol. 24, pp. 334_347, 1999.
Atluri, S.N.; Zhu, T. : A new meshless local Petro-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., vol. 22, pp. 117_127, 1998.
Atluri, S.N.; Zhu, T. : The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput. Mech., vol. 25, pp. 169_179, 2000a.
Atluri, S.N.; Zhu, T. : New concepts in meshless methods. Int. J. Numer. Meth. Engng., vol. 47, pp. 537_556, 2000b.
Aluru, N.R. : A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Engng., vol. 47, pp. 1083_1121, 2000.
Ballhause, D.; D’Ottavio, M.; , B.; Carrera, E. : A unified formulation to assess multilayered theories for piezoelectric plates. Comput. & Struct., vol. 83, pp. 1217_1235, 2005.
Batra, R.C.; Vidoli, S. : Higher-order piezoelectric plate theory derived from a three-dimensional variational principle. AIAA J., vol. 40, pp. 91_104, 2002.
Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. : Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 3_47, 1996.
Belytschko, T.; Lu, Y.Y.; Gu, L. : Element-Free Galerkin Methods. Int. J. Numer. Meth. Engng., vol. 37, pp. 229_256, 1994.
Chen, J.S.; Pan, C.; Wu, C.T.; Liu, W.K. : Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput. Methods Appl. Mech. Engrg., vol. 139, pp. 195_227, 1996.
Chen, J.S.; Pan, C.; Roque, C.M.O.L.; Wang, H.P. : Lagrangian reproducing kernel particle method for metal forming analysis. Comput. Mech., vol. 22, pp. 289_307, 1998.
Dube, G.P.; Kapuria S.; Dumir, P.C. : Exact piezothermoelastic solution of simply_supported orthotropic flat panel in cylindrical bending. Int. J. Mech. Sci., vol. 38, pp. 1161_1177, 1996.
Heyliger, P. : Static behavior of laminated elastic/piezoelectric plates. AIAA J., vol. 32, pp. 2481_2484, 1994.
Heyliger, P.; Brooks, S. : Free vibration of piezoelectric laminates in cylindrical bending. Int. J. Solids Struct., vol. 32, pp. 2945_2960, 1995.
Heyliger, P.; Brooks, S. : Exact solutions for laminated piezoelectric plates in cylindrical bending. J. Appl. Mech., vol. 63, pp. 903_910, 1996.
Jonnalagadda, K.D.; Blandford, G.E.; Tauchert, T.R. : Piezothermoelastic composite plate analysis using first-order shear deformation theory. Comput. & Struct., vol. 51, pp. 79_89, 1994.
Khdeir, A.A.; Aldraihem O.J. : Analytical models and solutions of laminated composite piezoelectric plates. Mech. Adv. Mater. Struct., vol. 14, pp. 67_80, 2007.
Lancaster, P.; Salkauakas, K. : Surfaces generated by moving least squares methods. Math. Comput., vol. 37, pp. 141_158, 1981.
Lee, J.S.; Jiang, L.Z. : Exact electroelastic analysis of piezoelectric laminae via state space approach. Int. J. Solids Struct., vol. 33, pp. 977_990, 1996.
Liu, W.K.; Jun, S.; Li, S.; Adee J.; Belytschko, T. : Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Meth. Engng. vol. 38, pp. 1655_1679, 1995.
Liu, W.K.; Jun, S.; Zhang, Y.F. : Reproducing kernel particle methods. Int. J. Numer. Meth. Engng. vol. 20, pp. 1081_1106, 1995.
Lu, Y.Y.; Belytschko, T.; Gu, L. : A new implementation of the element free Galerkin method. Comput. Methods Appl. Mech. Engrg., vol. 113, pp. 397_414, 1994.
Mindlin, R. : High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct., vol. 8, pp. 895_906, 1972.
, E.; Idelsohn, S.; Zienkiewicz, O.C.; Taylor, R.L. : A finite point method in computational mechanics_Applications to convective transport and fluid flow. Int. J. Numer. Meth. Engng. vol. 39, pp. 3839_3866, 1996.
Pagano, N.J. : Exact solutions for composites in cylindrical bending. J. Compos. Mater., vol. 3, pp. 398_411, 1969.
Pagano, N.J. : Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., vol. 4, pp. 20_34, 1970.
Pan, E. : Exact solutions magneto-electro-elastic laminates in cylindrical bending. Int. J. Solids Struct., vol. 40, pp. 6859_6876, 2001.
Pan, E.; Heyliger, P.R. : Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech., vol. 68, pp. 608_618, 2003.
Shu, X. : Free vibration of laminated piezoelectric composite plates based on an accurate theory. Compos. Struct., vol. 67, pp. 375_382, 2005.
Tauchert, T.R. : Piezothermoelastic behavior of a laminate. J. Thermal Stresses, vol. 15, pp. 25_37, 1992.
Tiersten, H.F., Linear Piezoelectric Plate Vibrations, Plenum Press, New York, 1969.
Vel, S.S.; Batra, R.C. : Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. J. Appl. Mech., vol. 67, pp. 558_567, 2000.
Wu, C.P.; Lo, J.Y.; Chao, J.K. : A three-dimensional asymptotic theory of laminated piezoelectric shells. CMC: Comput. Mater. Continua, vol. 2, pp.119_137, 2004.
Wu, C.P.; Lo, J.Y. : An asymptotic theory for dynamic response of laminated piezoelectric shells. Acta Mech., vol. 183, pp. 177_208, 2006.
Wu, C.P.; Syu, Y.S. : Exact solution of functionally graded piezoelectric shells under cylindrical bending. Int. J. Solids Struct., vol. 44, pp. 6450_6472, 2007.
Wu, C.P.; Syu, Y.S.; Lo, J.Y. : Three-dimensional solutions of multilayered piezoelectric hollow cylinders by an asymptotic approach. Int. J. Mech. Sci., vol. 49, pp. 669_689, 2007.
王永明;黃子倫,微分再生核近似法於三維彈性力學上之應用.國立成功大學土木系碩士論文,2002。
王永明;汪神義,複合層板之無網格法分析. 國立成功大學土木系碩士論文,2003。