簡易檢索 / 詳目顯示

研究生: 徐仲毅
Hsu, Chung-Yi
論文名稱: 半平面壓電裂紋材料之數值分析
Numerical Analysis of a Crack in a Half-Plane Piezoelectric Material
指導教授: 宋見春
Sung, Jen-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 77
中文關鍵詞: 廣義應力強度因子奇異積分方程式橫向等向性壓電材料
外文關鍵詞: Generalized stress intensity factors, Transversely isotropic piezoelectric material, Stroh formalism, Singular integral equation
相關次數: 點閱:211下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文分析半平面壓電材料內含非滲透型裂紋之問題。基於Stroh公式,考慮廣義半平面電彈邊界條件,引用點差排及電偶極子作用在半平面壓電材料之格林函數,以差排密度和電偶極子密度為未知函數分佈於裂紋面而建立一組奇異積分方程式,經由數值方法求解此積分方程並間接推得裂紋尖端處之應力與電位移強度因子。文中探討裂紋面承受均佈壓曳力、剪曳力、電位移與裂紋深度、傾斜方向等對強度因子之影響。

     An impermeable crack embedded in a half-plane piezoelectric material with general boundary conditions is investigated. Based on the extended Stroh formalism and the Green's functions for a point dislocation and an electric dipole, a system of singular integral equations for the unknown dislocation densities and electric dipole densities defined on the crack faces is derived. The surfaces of the crack are subjected to uniform pressure, shear or electric displacement loading. Numerical method is then used to calculate the solutions to the system of equations. Results are presented graphically for the generalized stress intensity factors for transversely isotropic piezoelectric material. The effects of the depth of the crack and the orientation of the crack for different piezoelectric ceramics are also discussed in some detail.

    摘要   I 英文摘要 II 誌謝   III 目錄   IV 表目錄  VI 圖目錄  VII 第一章 緒論 1   1.1 前言 1    1.2 壓電材料 2   1.3 壓電裂紋材料 5   1.4 文獻回顧 7   1.5 本文內容與綱要 9 第二章 基本公式 12   2.1 Stroh延伸公式 12   2.2 半平面壓電材料之基本解 17 第三章 問題推演 23   3.1 奇異積分方程式 24   3.2 廣義應力強度因子 26 第四章 數值方法 30   4.1 奇異積分方程組之正規化 30   4.2 正規奇異積分方程組之離散化 31 第五章 結果與討論 35   5.1 裂紋深度之影響 40    5.1.1 水平裂紋 42    5.1.1.1水平裂紋受均佈壓曳力 42    5.1.1.2水平裂紋受均佈剪曳力 42    5.1.1.3水平裂紋受均佈電位移 43    5.1.2 垂直裂紋 44    5.1.2.1垂直裂紋受均佈壓曳力 44    5.1.2.2垂直裂紋受均佈剪曳力 44    5.1.2.3垂直裂紋受均佈電位移 45   5.2 傾斜裂紋之探討 48 第六章 結論 68 參考文獻 70 附錄A 73 自述

    Barnett, D.M., Lothe, J., 1975. Dislocations and line charges in anisotropic piezoelectric insulators. Phys. Status Solidi. B 67, 105-111.

    Chen, B.J., Liew, K.M., Xiao, Z.M., 2005. Unified electrical boundary conditions for a crack interacting with a dislocation in piezoelectric media. Int. J. Solids Struct. 42, 5118-5128.

    Chue, C.H., Weng, S.M., 2005. Fracture analysis of piezoelectric materials with an arbitrarily oriented crack using energy density theory. Computers and Structures. 83, 1251-1265.

    Chung, M.Y., Ting, 1996. T.C.T., Piezoelectric solid with an elliptic inclusion or hole. Int. J. Solids Struct. 33, 3343-3461.

    Deeg, W.F., 1980. The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. PhD thesis, Stanford University.

    Dunn, M.L., 1994. The effect of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Eng. Fract. Mech. 48, 25-39.

    Dunn, M.L., 1999. Wienecke, H.A., Half-space Green's functions for transversely isotropic piezoelectric solids. J. Appl. Mech. 66, 675-679.

    Eshelby, J.D., Read, W.T., Shockley, W., 1953. Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica. 1, 251-259.

    Hu, Yiantai., Huang, Yuying., Chen, Chuanyao., Zhong, Weifang., 2000. Green's functions for a piezoelectric semi-infinite body with a fixed conductor surface. Mechanics Research Communications. 27, 333-338.

    Gao, C.F., Fan, W.X., 1998. Green's functions for the plane problem in a half-infinite piezoelectric medium. Mechanics Research Communications. 25, 695-700.

    Gao, C.F., Fan, W.X., 1999. Exact solutions for the plane problem in piezoelectric materials with an elliptic or a crack. Int. J. Solids Struct. 36, 2527-2540.

    Gao, C.F., Noda, N., 2004. Green's functions of a half-infinite piezoelectric body:Exact solutions. Acta Mechanica. 172, 169-179.

    Gerasoulis, A., 1982. The use of piecewise quadratic polynomials for the solution of singular integral equations of cauchy type. Comput. Math. Appl. 8, 15-22.

    Lekhnitskii, S.G., 1963. Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco, California.

    Liu, J., Wang, B., Du, S., 1997a. Electro-elastic Green's functions for a piezoelectric half-space and their application. Applied Mathematics and Mechanics. 18, 1037-1043.

    Lin, S., Narita, F., Shindo, Y., 2003. Comparison of energy release rate and energy density criteria for a piezoelectric layered composite with a permeable and impermeable crack normal to interface. Theoretical and Applied Fracture Mechanics. 39, 229-243.

    Lu, P., 1997. Green functions of piezoelectric material with an elliptic hole or inclusion. Int. J. Solids Struct. 35, 651-664.

    Muskhelishvili, N.I., 1953. Some basic problems of the mathematical theory of elasticity. J. R. Radok, trans., Noordhoff, Groningen, The Netherlands.

    Ou, Z.C., Chen, Y.H., 2003. Explicit expressions of eigenvalues and eigenvectors for transversely isotropic piezoelectric materials. Acta Mechanics. 162, 213-219.

    Pan, E., 2001. Mindlin's problem for an anisotropic piezoelectric half-space with general boundary conditions. Proc. R. Soc. A 458, 181-208.

    Pak, Y.E., 1990a. Crack extension force in a piezoelectric material. Trans. ASME J. Appl. Mech. 57, 647-653.

    Pak, Y.E., 1990b. Force on a piezoelectric screw dislocation. Trans. ASME J. Appl. Mech. 57, 863-869.

    Pak, Y.E., 1992. Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fract. 54, 79-100.

    Park, S.B., Sun, C.T., 1995. Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203-216.

    Parton, V.Z., 1976. Fracture mechanics of piezoelectric materials. Acta Astronaut. 3, 671-683.

    Qin, Q.H., Mai, Y.W., 1997. Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solids. Theoretical and applied Fracture Mechanics. 26, 185-191.

    Schneider, G.A., Felten, F., McMeeking, R.M., 2003. The electrical potential difference across cracks in PZT measured by Kelvin probe microscopy and the implications for fracture. Acta Materialia, 51, 2235-2241.

    Shen, S., Nishioka, T., 2000. Fracture of piezoelectric materials:energy density criterion. Theoretical and Applied Fracture Mechanics, 33, 57-65.

    Sosa, H.A., 1991. Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28, 491-505.

    Sosa, H.A., Khutoryansky, N., 1996. New developments concerning piezoelectric materials with defects. Int. J. Solids Struct. 33, 3399-3414.

    Sosa, H.A., Castro M.A., 1994. On concentrated loads at the boundary of piezoelectric half-plane. J. Mech. Phys. Solids. 42, 1105-1122.

    Stroh, A. N. 1958. Dislocations and cracks in anisotropic elasticity. Phil. Mag. 3, 625-646 .

    Suo, Z., Kuo, C.M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. Journal of the Mechanics and Physics of Solids. 40, 739-765.

    Ting, T.C.T., 1992. Image singularities of Green's functions for anisotropic elastic half-spaces and bimaterials. Q. J. Mech. Appl. Math. 45, 119-139.

    Ting, T.C.T., 1996. Anisotropic elasticity. Oxford University Press. London.

    Wang, B.L., Mai, Y.W., 2004. Impermeable crack and permeable crack assumptions, which one is more realistic ?. ASME Journal of Applied Mechanics, 71, 575-578.

    Zhang, T.Y., Qian, C.F., Tong, P., 1998. Linear electric-elastic analysis of a cavity or a crack in a piezoelectric material. Int. J. Solids Struct. 35, 2121-2149.

    Zhang, T.Y., Zhao, M., Tong, P., 2002. Fracture of piezoelectric ceramics. Advances in Applied Mechanics, 38, 148-289.

    Zhang, T.Y., Gao, C.F., 2004. Fracture behaviors of piezoelectric materials. Theoretical and Applied Fracture Mechanics, 41, 339-379.

    Zuo, J.Z., Sih, G.C., 2000. Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics. Theoretical and Applied Fracture Mechanics, 34, 17-33.

    吳朗, 1994. 電子陶瓷-壓電. 全欣, 台北.

    周卓明, 2003. 壓電力學. 全華, 台北.

    劉晉奇, 2005. 含界面裂紋之雙磁電彈楔形結構反平面破壞分析. 國立成功大學機械工程學系博士論文.

    下載圖示 校內:立即公開
    校外:2006-07-06公開
    QR CODE