| 研究生: |
莊智凱 Zhuang, Zhi-Kai |
|---|---|
| 論文名稱: |
以共濺鍍技術開發鋯摻雜氧化銦鎵鋅通道層薄膜電晶體之研究 Improved Electrical Performance and Stability of Zr-IGZO Thin-Film Transistors with Zr0.85Si0.15O2 Gate Dielectric Using Co-sputtering Technique |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 共濺鍍 、氧化矽鋯 、氧化銦鎵鋅 、鋯摻雜 、薄膜電晶體 |
| 外文關鍵詞: | Zr-doped IGZO, Zr0.85Si0.15O2, Co-sputtering, Thin film transistor |
| 相關次數: | 點閱:129 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為開發新穎通道層材料,本論文利用共濺鍍沉積技術,製備氧化矽鋯之介電層與開發鋯摻雜氧化銦鎵鋅(Zr-doped IGZO)之通道層,以改善介電層/通道層之界面缺陷,並探究其於薄膜電晶體電特性與可靠度之改善。
本研究分為兩大部分,第一部分為接續本實驗室先前開發氧化矽鋯閘極介電層,藉由摻入適當含量之矽元素於二氧化鋯介電層中,改善二氧化鋯介電層之薄膜品質且有效降低與氧化銦鎵鋅通道層之界面缺陷密度。本論文亦沉積二氧化矽與二氧化鋯之堆疊結構作為對照,以分析比較其界面於元件特性與可靠度之影響;第二部分為利用共濺鍍技術以二氧化鋯與二氧化矽靶材開發鋯摻雜氧化銦鎵鋅薄膜,並調變各項參數於鋯摻雜氧化銦鎵鋅通道層探究對元件特性之影響,除藉由調變沉積功率以改變通道層材料成份組成之比例與厚度,進行其薄膜分析、元件電特性與可靠度之研究外,亦探討經由熱退火製程的Zr-doped IGZO通道層對於材料分析、元件電特性與可靠度之影響。
於本論文第一部分,首先討論二氧化鋯與二氧化矽以堆疊式結構或共濺鍍技術製備介電層,及其應用於氧化銦鎵鋅薄膜電晶體時,觀察界面的不同造成元件特性與可靠度之差異。實驗結果指出,經由摻入適量的Si元素以氧化矽鋯有較佳的界面品質及較少的界面缺陷,可有效提升元件之特性。本研究進一步分析此元件之可靠度,於偏壓應力方面,施予±4 V閘極偏壓,其臨界電壓偏移量分別從ZrO2的1.11 V與-0.96 V降低至Zr0.85Si0.15O2的0.77與-0.57 V;於熱穩定方面,設定環境溫度從初始溫度298K升溫至378 K,其臨界電壓偏移量從-0.98 V降至-0.45 V,顯示元件可靠度亦獲得有效改善。
於本論文第二部分,利用Zr元素與氧鍵結較強且電負度較小之特點,藉由共濺鍍技術摻入於IGZO通道層以抑制氧空缺的產生,改善傳統氧化銦鎵鋅薄膜高缺陷密度之通病,提升氧化銦鎵鋅通道層之薄膜品質。由於Zr元素易與氧形成鍵結,使氧原子不易游離,進而捕捉氧氣以修復薄膜原本存留的氧空缺。另一方面,摻入Zr元素使得IGZO薄膜之能隙增加與施體能階減少,因而降低其漏電流。此外,進一步藉由熱退火處理以修補及活化鋯摻雜氧化銦鎵鋅薄膜之品質,而達成其元件特性與可靠度之優化。
依據實驗結果顯示,摻入適量Zr元素之IGZO通道層,確實可改善薄膜的品質亦減少介電層/通道層界面之缺陷密度,更有助於降低氧空缺之含量。本研究發現經300 oC氮氣環境下退火的Zr(2.0 %)-IGZO TFT,展現最佳元件之特性與可靠度,其載子遷移率為18.3 cm2/V∙s、次臨界擺幅為96 mV/dec、元件電流開關比為1.59×108、臨界電壓為0.56 V與界面缺陷密度為1.09×10^12 cm-2eV-1;於正負偏壓應力測試實驗部分,臨界電壓偏移量分別為0.22 V和-0.15 V;於熱穩定度部分,其臨界電壓偏移量為-0.13 V。綜合以上實驗結果符合本論文之研究目的。
本實驗以共濺鍍技術製備鋯摻雜氧化銦鎵鋅通道層之薄膜電晶體,成功改善其界面品質、閘極控制能力、元件特性與可靠度,故有助於未來顯示技術之應用以及電子產品性能之提升。
The performance of zirconium doped indium gallium zinc oxide thin-film transistors (Zr-IGZO TFTs) with zirconium silicon oxide (Zr0.85Si0.15O2) as gate dielectrics using a RF co-sputtering technique is investigated. Through incorporation of zirconium in channel to reduce the oxygen vacancies formation which have been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. It is exhibited that the stability of Zr-IGZO TFTs are better than IGZO TFTs under the positive and negative gate bias stresses (PGBS and NGBS). Experimental results reveal that Zr-IGZO channel was deposited at a power ratio of IGZO:ZrO2=80 W:50 W by post deposition annealing (PDA) in N2 shows the best device performance such as the on/off current ratio of 1.59×10^8, the subthreshold swing of 96 mV/dec, and the threshold voltage shift after 1000 sec positive/negative gate bias stress of 0.22 V/-0.13 V, respectively.
[1] http://www.pida.org.tw/optolink/optolink_pdf/97037401.pdf.
[2] 戴亞翔,TFT-LCD面板的驅動與設計,五南圖書出版股份有限公司, 2008.
[3] M. K. Lee, C. K. Kim, J. W. Park, E. Kim, M. L. Seol, J. Y. Park, Y. K. Choi, S. H. K. Park, K. C. Choi, IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3189-3192, 2017.
[4] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
[5] 王文俊、劉傳璽,薄膜電晶體液晶顯示器原理與實務,新文京開發出版股份有限公司,2008.
[6] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells,” Journal of Applied Physics, vol. 91, no. 4, pp. 1993-1997, 2002.
[7] Ü. Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1255-1268, 2010.
[8] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” Journal of Crystal Growth, vol. 130, no. 12, pp. 269-279, 1993.
[9] Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, and S. Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions,” Journal of Crystal Growth, vol. 243, no. 3-4, pp. 439-443, 2002.
[10] U. Ozgur, A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol. 98, Artical ID 041301, 2005.
[11] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, and M. Yoshida, in SID Dig. Vol. 18, 2006.
[12] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. vol. 93, pp. 1624-1630, 2003.
[13] J.Y. Kwon, D.J. Lee, K.B. Kim, “Review Paper: Transparent Amorphous Oxide Semiconductor Thin Film Transistor,” Electronic Materials Letters, vol. 7, No. 1, pp. 1-11, 2011.
[14] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9, pp. 851-858, 2006.
[15] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono, and J. Kanicki, “Photofield-effect in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors,” Journal of Information Display, vol. 9, no. 4, pp. 21-29, 2008.
[16] J.W. Hennek, J. Smith, A. Yan, M. G. Kim, W. Zhao, V. P. Dravid, A. Facchetti, and T. J. Marks, “Oxygen “Getter” Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X = Ga, Sc, Y, La) Transistors,” Journal of the American Chemical Society, vol. 35, no. 35, pp. 10729-10741, 2013.
[17] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.S. Park, Jae Kyeong Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied physics letters, vol. 90, no. 21, pp. 212114, 2007.
[18] N. C. Su, S. J. Wang, and A. Chin, “High-performance InGaZnO thin-film transistors using HfLaO gate dielectric” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1317-1319, 2009.
[19] M. K. Lee, C. K. Kim, J. W. Park, E. Kim, M. L. Seol, J. Y. Park, Y. K. Choi, S. H. K. Park, and K. C. Choi, “Electro-Thermal Annealing Method for Recovery of Cyclic Bending Stress in Flexible a-IGZO TFTs,” IEEE Trans. Electron Devices, vol. 64, pp. 3189-3192, 2017.
[20] L. L. Zheng, Q. Ma, Y. H. Wang, W. J. Liu, S. J. Ding, and D. W. Zhang, “High-Performance Unannealed a-InGaZnO TFT With an Atomic-Layer-Deposited SiO2 Insulator,” IEEE Electron Device Lett. vol. 37, pp. 743-746, 2016.
[21] X. Ding, H. Zhang, J. Zhang, J. Li, W. Shi, X. Jiang, and Z. Zhang, “IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures,” Materials Science in Semiconductor Processing, vol. 29, pp. 69-75, 2015.
[22] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
[23] S. Mohsenifar and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures,” Microelectronics and Solid-State Electronics, vol. 4(1), pp. 12-24, 2015.
[24] B. Cheng, M. Cao, R. Rao, A. Inani, P. Vande Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, P.M. Zeitzoff, and J.C.S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[25] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Applied physics letters, vol. 89, no. 6, pp. 3256-3269, 2001.
[26] H.L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High-k Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
[27] H. Chakraborty and D. Misra, “Characterization of High- Gate Dielectrics using MOS Capacitors,” International Journal of Scientific and Research Publications, vol. 3, no. 12, pp. 1-5, 2013.
[28] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
[29] H.Y. Huang, Y.C. Huang, J.Y. SU, N.C. SU, C.K. Chiangl, C.H. Wu, and S.J. Wang, “High Performance and Low Driving Voltage Amorphous InGaZnO Thin-Film Transistors Using High-HfSiO Dielectrics,” 68th Device Research Conference, 2010.
[30] S. Kim, M. H. Ham, B. Y. Oh, H. J. Kim, and J. M. Myoung, “High-κ TixSi1-xO2 thin films prepared by co-sputtering method,” Microelectronic Engineering, vol. 85, pp. 100-103, 2008.
[31] J. C. Park, I.T. Cho, E.S. Cho, D. H. Kim, C.Y. Jeong, and H.I. Kwon, “Comparative Study of ZrO2 and HfO2 as a High-κ Dielectric for Amorphous InGaZnO Thin Film Transistors,” Journal of Nanoelectronics and Optoelectronics, vol. 9, pp. 67-70, 2014.
[32] J. Robertson and R.M. Wallace, “High- materials and metal gates for CMOS applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
[33] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
[34] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
[35] H.L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High- Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
[36] H. H. Tseng, The Progress and Challenges of Applying High-k/Metal-Gated Devices to Advanced CMOS Technologies, Solid State Circuits Technologies, J. W. Swart, Ed., InTech, 2010.
[37] M. T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, “In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition,” Applied physics letters, vol. 87, no. 13, p. 133103, 2005.
[38] P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs,” Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
[39] P. Taechakumput, S. Taylor, O. Buiu, R. Potter, and P. Chalker, “Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition,” Microelectronics Reliability, vol. 47, no. 4-5, pp. 825-829, 2007.
[40] Y. Jung, W. Yang, C. Y. Koo, K. Song, and J. Moon, “High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors,” Journal of Materials Chemistry, vol. 22, no. 12, pp. 5390-5397, 2012.
[41] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radik, “High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors,” J. Appl. Phys. vol. 92, no. 9, pp. 5259-5263, 2002.
[42] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.S. Park, Jae Kyeong Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied physics letters, vol. 90, no. 21, pp. 212114, 2007.
[43] A. Ortiz-Conde, F. J. Garcı́a Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
[44] J. H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C. J. Kim, J. Park, Y. Park, D. M. Kim, and D. H. Kim, “Extraction of density of states in amorphous GaInZnO thin-film transistors by combining an optical charge pumping and capacitance–voltage characteristics,” IEEE Electron Device Letters, vol. 29, no. 12, pp. 1292-1295, 2008.
[45] D. K. Schroder, Semiconductor material and device characterization, 2nd edition, Wiley, New York, pp. 367-369, 1998.
[46] S. Jain, “Measurement of threshold voltage and channel length of submicron MOSFETs,” IEE Proceedings I Solid-State and Electron Devices, vol. 135, no. 6, pp. 135-162, 1988.
[47] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid-state Letters, vol. 10, no. 3, pp. H90-H93, 2007.
[48] S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs, TFT Consultant, Forest Row, E. Sussex, UK, pp. 63-64, 2013.
[49] K. Terada, K. Nishiyama, and K. I. Hatanaka., “Comparison of MOSFET-threshold-voltage extraction methods,” Solid- State Electron, vol. 45, pp. 35-40, 2001.
[50] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films,” Thin Solid Films, vol. 496, no. 1, pp. 99-103, 2006.
[51] A. Bolognesi, M. Berliocchi, M. Manenti, A. DiCarlo, P. Lugli, K. Lmimouni, and C. Dufour, “Effects of Grain Boundaries, Field-Dependent Mobility, and Interface Trap States on the Electrical Characteristics of Pentacene TFT,” IEEE Transactions on Electron Devices, vol. 51, no. 12, pp. 1997-2003, 2004.
[52] K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, “High-Mobility Thin-Film Transistors with Polycrystalline In–Ga–O Channel Fabricated by DC Magnetron Sputtering,” Applied Physics Express, vol. 5, no. 1, pp. 011102, 2012.
[53] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons. Inc., New Jersey, 2006.
[54] A. C. Tickle, “Thin-Film Transistors-A New Approach to Microelectronics,” Wiley, New York, 1969.
[55] B. E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE Transactions on Electron Devices, vol. 27, no. 3, pp. 606-608, 1980.
[56] S. M. Sze and M. K. Lee, “Semiconductor Devices Physics and Technology,” 3rd edition, Hoboken, N.J., Wiley, pp. 259-281, 2006.
[57] A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface surfaces,” Critical Reviews in Solid State and Material Sciences, vol. 6, no. 1, pp. 1-43, 1976.
[58] Y. C. Chiu, C. Y , Chang, S. S. Yen, C. C. Fan, H. H. Hsu, C. H. Cheng, P. C. Chen, P. W. Chen, G. L. Liou, M. H. Lee, C. Liu, and W. C. Chou, “On the variability of threshold voltage window in gate-injection versatile memories with Sub-60mV/dec subthreshold swing and 1012-cycling endurance,” IEEE International Reliability Physics Symposium (IRPS), 2016.
[59] C. L. Fan, F. P. Tseng, B. J. Li, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Huang, “Improvement in reliability of amorphous indium–gallium–zinc oxide thin-film transistors with Teflon/SiO2bilayer passivation under gate bias stress,” Japanese Journal of Applied Physics, vol. 55, no. 2S, pp. 02BC17, 2016.
[60] A. Suresh, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., Vol. 92, pp. 033502, 2008.
[61] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” IEEE Transactions on Device and Materials Reliability, vol.11 no. 1, pp. 112-117, 2011.
[62] C. V. Berkel and M. J. Powell, “Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors,” Applied Physics Letters, vol. 51, no. 14, pp. 1094-1096, 1987.
[63] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, Y. G. Mo, J. H. Jeong, J. Y. Kwon, M. K. Ryu, S. Y. Lee, R. Choi, and J. K. Jeong, “The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors,” Journal of The Electrochemical Society, vol. 157, no. 11, pp. H983-H986, 2010.
[64] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors,” Applied Physics Letters, vol. 98, no. 15, pp. 152109, 2011.
[65] J. K. Jeong, S. Yang, D. H . Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho, “Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors,” Applied Physics Letters, vol. 95, no. 12, pp. 123505, 2009.
[66] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett., vol. 100, no. 18, pp. 182103, 2012.
[67] Xinyuan Zhao and David Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Physical Review B, vol. 65, no. 7, pp. 075105, 2002.
[68] H. Kim, P. McIntyre, C. Chui, K. Saraswat, and S. Stemmer, “Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer,” Journal of Applied Physics, vol. 96, no. 6, pp. 3467-3472, 2004.
[69] C. H. Hung, S. J. Wang, P. Y. Liu, C. H. Wu, N. S. Wu, H. P. Yan, and T. H. Lin, “Using co-sputtered ZrSiOx gate dielectrics to improve mobility and subthreshold swing of amorphous IGZO thin-film transistors,” 74th Annual Device Research Conference (DRC), 2016.
[70] H. Kim, W. C. Choi, “Controlled Zr doping for inkjet-printed ZTO TFTs,” Ceramics International, vol. 43, no. 6, pp. 4775-4779, 2017.
[71] P. Xiao, T. Dong, L. Lan, Z. Lin, W. Song, E. Song, S. Sun, Y. Li, P. Gao, D. Luo, M. Xu, J. Peng, “High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer,” physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 6, pp. 493-497, 2016.
[72] C. X. Lin, “Fabrication of Thin-film Transistors Basaed on ZrAlO Gate Dielectrics and Ti-IGZO Channels by Co-sputtering Processes,” 2018.
[73] J. Raja, K. Jang, N, Balaji, W, Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Applied Physics Letters, vol. 102, no. 8, pp. 083505, 2013.
[74] D. B. Ruan, P. T. Liu, Y. C. Chiu, M. C. Yu, T. C. Chien, Y. H. Chen, P. Y. Kuo, and S. M. Sze, “Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition,” Thin Solid Films, vol. 660, pp. 885-890, 2018.
[75] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, “Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor,” Applied Physics Letters, vol. 98, no. 12, pp. 122105, 2011.
[76] B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, “Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors,” Journal of Alloys and Compounds, vol. 58, pp. 10-14, 2013.
[77] W. S. Choi, H. Jo, M. S. Kwon, and B. J. Jung, “Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping,” Current Applied Physics, vol. 14, no. 12, pp. 1831-1836, 2014.
[78] B.Y. Su, S. Y. Chu, and Y. D. Juang, “Improved Electrical and Thermal Stability of Solution-Processed Li-Doped ZnO Thin-Film Transistors,” IEEE Transactions on Electron Devices, vol. 59, no. 3, pp. 700-704, 2012.