簡易檢索 / 詳目顯示

研究生: 莊智凱
Zhuang, Zhi-Kai
論文名稱: 以共濺鍍技術開發鋯摻雜氧化銦鎵鋅通道層薄膜電晶體之研究
Improved Electrical Performance and Stability of Zr-IGZO Thin-Film Transistors with Zr0.85Si0.15O2 Gate Dielectric Using Co-sputtering Technique
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 共濺鍍氧化矽鋯氧化銦鎵鋅鋯摻雜薄膜電晶體
外文關鍵詞: Zr-doped IGZO, Zr0.85Si0.15O2, Co-sputtering, Thin film transistor
相關次數: 點閱:129下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為開發新穎通道層材料,本論文利用共濺鍍沉積技術,製備氧化矽鋯之介電層與開發鋯摻雜氧化銦鎵鋅(Zr-doped IGZO)之通道層,以改善介電層/通道層之界面缺陷,並探究其於薄膜電晶體電特性與可靠度之改善。
    本研究分為兩大部分,第一部分為接續本實驗室先前開發氧化矽鋯閘極介電層,藉由摻入適當含量之矽元素於二氧化鋯介電層中,改善二氧化鋯介電層之薄膜品質且有效降低與氧化銦鎵鋅通道層之界面缺陷密度。本論文亦沉積二氧化矽與二氧化鋯之堆疊結構作為對照,以分析比較其界面於元件特性與可靠度之影響;第二部分為利用共濺鍍技術以二氧化鋯與二氧化矽靶材開發鋯摻雜氧化銦鎵鋅薄膜,並調變各項參數於鋯摻雜氧化銦鎵鋅通道層探究對元件特性之影響,除藉由調變沉積功率以改變通道層材料成份組成之比例與厚度,進行其薄膜分析、元件電特性與可靠度之研究外,亦探討經由熱退火製程的Zr-doped IGZO通道層對於材料分析、元件電特性與可靠度之影響。
    於本論文第一部分,首先討論二氧化鋯與二氧化矽以堆疊式結構或共濺鍍技術製備介電層,及其應用於氧化銦鎵鋅薄膜電晶體時,觀察界面的不同造成元件特性與可靠度之差異。實驗結果指出,經由摻入適量的Si元素以氧化矽鋯有較佳的界面品質及較少的界面缺陷,可有效提升元件之特性。本研究進一步分析此元件之可靠度,於偏壓應力方面,施予±4 V閘極偏壓,其臨界電壓偏移量分別從ZrO2的1.11 V與-0.96 V降低至Zr0.85Si0.15O2的0.77與-0.57 V;於熱穩定方面,設定環境溫度從初始溫度298K升溫至378 K,其臨界電壓偏移量從-0.98 V降至-0.45 V,顯示元件可靠度亦獲得有效改善。
    於本論文第二部分,利用Zr元素與氧鍵結較強且電負度較小之特點,藉由共濺鍍技術摻入於IGZO通道層以抑制氧空缺的產生,改善傳統氧化銦鎵鋅薄膜高缺陷密度之通病,提升氧化銦鎵鋅通道層之薄膜品質。由於Zr元素易與氧形成鍵結,使氧原子不易游離,進而捕捉氧氣以修復薄膜原本存留的氧空缺。另一方面,摻入Zr元素使得IGZO薄膜之能隙增加與施體能階減少,因而降低其漏電流。此外,進一步藉由熱退火處理以修補及活化鋯摻雜氧化銦鎵鋅薄膜之品質,而達成其元件特性與可靠度之優化。
    依據實驗結果顯示,摻入適量Zr元素之IGZO通道層,確實可改善薄膜的品質亦減少介電層/通道層界面之缺陷密度,更有助於降低氧空缺之含量。本研究發現經300 oC氮氣環境下退火的Zr(2.0 %)-IGZO TFT,展現最佳元件之特性與可靠度,其載子遷移率為18.3 cm2/V∙s、次臨界擺幅為96 mV/dec、元件電流開關比為1.59×108、臨界電壓為0.56 V與界面缺陷密度為1.09×10^12 cm-2eV-1;於正負偏壓應力測試實驗部分,臨界電壓偏移量分別為0.22 V和-0.15 V;於熱穩定度部分,其臨界電壓偏移量為-0.13 V。綜合以上實驗結果符合本論文之研究目的。
    本實驗以共濺鍍技術製備鋯摻雜氧化銦鎵鋅通道層之薄膜電晶體,成功改善其界面品質、閘極控制能力、元件特性與可靠度,故有助於未來顯示技術之應用以及電子產品性能之提升。

    The performance of zirconium doped indium gallium zinc oxide thin-film transistors (Zr-IGZO TFTs) with zirconium silicon oxide (Zr0.85Si0.15O2) as gate dielectrics using a RF co-sputtering technique is investigated. Through incorporation of zirconium in channel to reduce the oxygen vacancies formation which have been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. It is exhibited that the stability of Zr-IGZO TFTs are better than IGZO TFTs under the positive and negative gate bias stresses (PGBS and NGBS). Experimental results reveal that Zr-IGZO channel was deposited at a power ratio of IGZO:ZrO2=80 W:50 W by post deposition annealing (PDA) in N2 shows the best device performance such as the on/off current ratio of 1.59×10^8, the subthreshold swing of 96 mV/dec, and the threshold voltage shift after 1000 sec positive/negative gate bias stress of 0.22 V/-0.13 V, respectively.

    摘 要…………………………………………………………………………………………………………………………………………………I abstract...............................................................................................................................................IV 致謝…………………………………………………………………………………………………………...X 目錄…………………………………………………………………………………………………………………………………………………..XI 表目錄…………………………………………………………………………………………………………………………………………….XIII 圖目錄………………………………………………………………………………………………………………………………………………………XIV 第一章 緒論 1 1-1 平面顯示器簡介 1 1-2 非晶型氧化物半導體及其於薄膜電晶體之應用 3 1-3 薄膜電晶體高介電常數材料之採用考量 9 1-4 研究動機 14 第二章 理論基礎 18 2-1 薄膜電晶體操作原理簡介 18 2-2 薄膜電晶體基本參數 21 2-3 MOS結構介電層之缺陷及其效應 25 2-4 元件可靠度之理論與量測 29 第三章 實驗設備與元件製備流程 34 3-1 射頻磁控濺鍍機與共濺鍍技術簡介 34 3-1-1 電漿與濺鍍 34 3-1-2 射頻濺鍍 35 3-1-3 共濺鍍薄膜沉積技術 36 3-2 鋯摻雜氧化銦鎵鋅薄膜電晶體之製備流程 37 第四章 介電層界面品質對元件特性之探討 43 4-1 氧化矽鋯介電層材料分析 43 4-1-1 成分與介電特性分析 43 4-1-2 XRD薄膜分析 47 4-2 堆疊式閘極介電層IGZO-TFT之元件特性 48 4-3 氧化矽鋯薄膜電晶體元件特性量測及可靠度分析 50 第五章 通道層品質對元件特性之探討 56 5-1 鋯摻雜氧化銦鎵鋅通道層材料分析 56 5-1-1 XPS薄膜分析 56 5-1-2 XRD薄膜分析 58 5-2 Zr摻雜IGZO-TFT元件特性量測及可靠度分析 59 5-2-1 未後熱處理通道層之元件特性量測及可靠度分析 60 5-2-2 經後熱處理通道層之元件特性量測及可靠度分析 68 第六章 結論與未來研究建議 77 6-1 結論 77 6-2 未來研究之建議 80 參考資料…………………………………………………………………………………………………………………………………………81  表目錄 表1-1 不同通道材料之優缺點 5 表4-1 Si元素於ZrxSi1-xO2薄膜所佔有之比例 44 表4-2 ZrxSi1-xO2薄膜於不同退火溫度下之κ值比較 46 表4-3 ZrxSi1-xO2薄膜於不同退火溫度下之電容值比較 46 表4-4 經600 oC退火堆疊式閘極介電層IGZO-TFT之元件特性 50 表4-5 經600 oC退火ZrO2與Zr0.85Si0.15O2閘極介電層IGZO-TFT之元件特性 52 表4-6 ZrO2與Zr0.85Si0.15O2閘極介電層IGZO-TFT偏壓應力下之〖∆V〗_TH 54 表4-7 ZrO2與Zr0.85Si0.15O2閘極介電層IGZO-TFT於不同環境溫度下之〖∆V〗_TH 55 表5-1 Zr-doped IGZO薄膜中各元素所佔之比例 57 表5-2 未退火之Zr-doped IGZO-TFT之元件特性 63 表5-3 IGZO與Zr-doped IGZO-TFT偏壓應力下之∆V_TH 66 表5-4 IGZO與Zr-doped IGZO-TFT於不同環境溫度下之∆V_TH 68 表5-5 熱退火之Zr-doped IGZO-TFT元件特性 71 表5-6 300 oC熱退火前後Zr(2.0 %) IGZO-TFT於偏壓應力下之〖∆V〗_TH 73 表5-7 IGZO與Zr-doped IGZO-TFT於不同環境溫度下之∆V_TH 75 表5-8 經氮氣退火之Zr(2.0 %) IGZO-TFT與其他文獻之比較 76   圖目錄 圖1-1 氧化鋅之纖鋅礦結構 6 圖1-2 傳統化合物半導體與後過渡金屬半導體之電子移動路徑 7 圖1-3 非晶系氧化物半導體成分和電子移動率及濃度分布 9 圖1-4 不同介電材料於不同EOT之漏電流大小 11 圖1-5 不同介電材料與其能隙寬度 13 圖1-6 不同晶體結構ZrO2薄膜之介電常數 14 圖1-7 改善薄膜電晶體之可靠度及其量測方式: (a)通道沉積後退火、(b)偏壓應力 與(c)熱穩定度 16 圖2-1 下閘極TFT結構示意圖 18 圖2-2 TFT操作狀態之MIS能帶圖: (a)關閉狀態與(b)累增狀態 20 圖2-3 (a)完全空乏通道之能帶圖與(b)源極/汲極與通道接面之能帶圖 20 圖2-4 場效電晶體輸出曲線圖 21 圖2-5 萃取TFT之V_TH、μ、I_off、I_on和SS示意圖 25 圖2-6 MOS結構介電層中不同缺陷型態之位置分布 26 圖2-7 Q_it對於高頻與低頻MOS電容C-V曲線的影響 27 圖2-8 介電/通道層之界面缺陷系統 27 圖2-9 陷阱電荷所造成的遲滯現象 28 圖2-10 n型通道TET之能帶圖、電荷分佈與電場分佈: (a)理想(b)實際 31 圖2-11 電洞累積源極端的能障下降: (a)室溫環境下(b)高溫環境下 33 圖3-1 雙靶射頻磁控共濺鍍系統 37 圖3-2 鋯摻雜氧化銦鎵鋅之薄膜電晶體製作流程 38 圖4-1 ZrxSi1-xO2薄膜各元素成分之比例 44 圖4-2 ZrO2與ZrxSi1-xO2薄膜於不同退火溫度之κ值與MIM電容值 45 圖4-3 (a)ZrO2、(b)Zr0.85Si0.15O2與(c)Zr0.45Si0.55O2介電層電容器之J-V特性曲線 47 圖4-4 (a)ZrO2與(b)Zr0.85Si0.15O2薄膜於不同退火溫度之XRD分析 48 圖4-5 (a) ZrO2及(b)SiO2/ZrO2、(c) ZrO2/SiO2與(d) SiO2/ZrO2/SiO2ZrO2堆疊式閘極介電層之IGZO-TFT結構示意圖 48 圖4-6 (a) ZrO2及(b)SiO2/ZrO2、(c) ZrO2/SiO2與(d) SiO2/ZrO2/SiO2堆疊式閘極介電層IGZO-TFT之I_DS-V_DS輸出特性曲線 49 圖4-7 經600 oC退火堆疊式閘極介電層IGZO-TFT之I_DS-V_GS曲線特性 50 圖4-8 經600 oC退火(a)ZrO2與(b)Zr0.85Si0.15O2閘極介電層IGZO-TFT之I_DS-V_DS曲線 51 圖4-9 經600 oC退火ZrO2與Zr0.85Si0.15O2閘極介電層IGZO-TFT之I_DS-V_GS曲線 52 圖4-10 經600 oC退火(a)ZrO2與(b) Zr0.85Si0.15O2閘極介電層IGZO-TFT於正負偏壓應力之I_DS-V_GS曲線 53 圖4-11 經600 oC退火(a)ZrO2與(b)Zr0.85Si0.15O2閘極介電層IGZO-TFT於不同環境溫度下之I_DS-V_GS曲線 55 圖5-1 (a)IGZO及(b)Zr(1.3 %)、(c)Zr(2.0 %)與(d)Zr(2.8%)-IGZO薄膜之O 1s軌域XPS分析 58 圖5-2 (a)IGZO及(b)Zr(1.3 %)、(c)Zr(2.0 %)與(d)Zr(2.8%)-IGZO薄膜於氮氣環境下不同退火溫度之XRD分析 59 圖5-3 未退火(a)IGZO及(b)Zr(1.3 %)、(c)Zr(2.0 %)與(d)Zr(2.8%)-IGZO TFT之I_DS-V_DS輸出特性曲線 61 圖5-4 未退火之Zr-doped IGZO-TFT之I_DS-V_GS轉移特性曲線 62 圖5-5 (a)IGZO及(b) Zr(1.3 %)、(c) Zr(2.0 %)與(d) Zr(2.8%)-IGZO TFT於正負偏壓應力之I_DS-V_GS曲線 65 圖5-6 IGZO與Zr-doped IGZO-TFT偏壓應力下之∆V_TH比較 66 圖5-7 (a)IGZO及(b)Zr(1.3 %)、(c)Zr(2.0 %)與(d)Zr(2.8%)-IGZO TFT於不同環境溫度下之I_DS-V_GS曲線 67 圖5-8 IGZO與Zr-doped IGZO-TFT於不同環境溫度下之∆V_TH比較 68 圖5-9 熱退火之(a)IGZO及(b) Zr(1.3 %)、(c) Zr(2.0 %)與(d) Zr(2.8%)-IGZO TFT之I_DS-V_GS轉移特性曲線 70 圖5-10 Zr(2.0 %) IGZO-TFT於正負偏壓應力之I_DS-V_GS 轉移曲線: (a)未退火(b)300 oC氮氣熱退火 72 圖5-11 300 oC熱退火前後Zr-doped IGZO-TFT於偏壓應力下之∆V_TH比較 73 圖5-12 300 oC熱退火前後Zr(2.0 %) IGZO-TFT於不同環境溫度下之I_DS-V_GS曲線 74 圖5-13 300 oC熱退火前後Zr(2.0 %) IGZO-TFT於不同環境溫度下之∆V_TH比較 75

    [1] http://www.pida.org.tw/optolink/optolink_pdf/97037401.pdf.
    [2] 戴亞翔,TFT-LCD面板的驅動與設計,五南圖書出版股份有限公司, 2008.
    [3] M. K. Lee, C. K. Kim, J. W. Park, E. Kim, M. L. Seol, J. Y. Park, Y. K. Choi, S. H. K. Park, K. C. Choi, IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3189-3192, 2017.
    [4] S. B. Ogale, Thin films and heterostructures for oxide for oxide electronics, New York, NY: Springer, 2005.
    [5] 王文俊、劉傳璽,薄膜電晶體液晶顯示器原理與實務,新文京開發出版股份有限公司,2008.
    [6] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells,” Journal of Applied Physics, vol. 91, no. 4, pp. 1993-1997, 2002.
    [7] Ü. Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proceedings of the IEEE, vol. 98, no. 7, pp. 1255-1268, 2010.
    [8] N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture,” Journal of Crystal Growth, vol. 130, no. 12, pp. 269-279, 1993.
    [9] Y. Zhang, G. Du, D. Liu, X. Wang, Y. Ma, J. Wang, J. Yin, X. Yang, X. Hou, and S. Yang, “Crystal growth of undoped ZnO films on Si substrates under different sputtering conditions,” Journal of Crystal Growth, vol. 243, no. 3-4, pp. 439-443, 2002.
    [10] U. Ozgur, A comprehensive review of ZnO materials and devices, Journal of Applied Physics, vol. 98, Artical ID 041301, 2005.
    [11] T. Hirao, M. Furuta, H. Furuta, T. Matsuda, T. Hiramatsu, H. Hokari, and M. Yoshida, in SID Dig. Vol. 18, 2006.
    [12] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, J. Appl. Phys. vol. 93, pp. 1624-1630, 2003.
    [13] J.Y. Kwon, D.J. Lee, K.B. Kim, “Review Paper: Transparent Amorphous Oxide Semiconductor Thin Film Transistor,” Electronic Materials Letters, vol. 7, No. 1, pp. 1-11, 2011.
    [14] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” Journal of Non-Crystalline Solids, vol. 352, no. 9, pp. 851-858, 2006.
    [15] T. C. Fung, C. S. Chuang, K. Nomura, H. P. D. Shieh, H. Hosono, and J. Kanicki, “Photofield-effect in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors,” Journal of Information Display, vol. 9, no. 4, pp. 21-29, 2008.
    [16] J.W. Hennek, J. Smith, A. Yan, M. G. Kim, W. Zhao, V. P. Dravid, A. Facchetti, and T. J. Marks, “Oxygen “Getter” Effects on Microstructure and Carrier Transport in Low Temperature Combustion-Processed a-InXZnO (X = Ga, Sc, Y, La) Transistors,” Journal of the American Chemical Society, vol. 35, no. 35, pp. 10729-10741, 2013.
    [17] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.S. Park, Jae Kyeong Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied physics letters, vol. 90, no. 21, pp. 212114, 2007.
    [18] N. C. Su, S. J. Wang, and A. Chin, “High-performance InGaZnO thin-film transistors using HfLaO gate dielectric” IEEE Electron Device Letters, vol. 30, no. 12, pp. 1317-1319, 2009.
    [19] M. K. Lee, C. K. Kim, J. W. Park, E. Kim, M. L. Seol, J. Y. Park, Y. K. Choi, S. H. K. Park, and K. C. Choi, “Electro-Thermal Annealing Method for Recovery of Cyclic Bending Stress in Flexible a-IGZO TFTs,” IEEE Trans. Electron Devices, vol. 64, pp. 3189-3192, 2017.
    [20] L. L. Zheng, Q. Ma, Y. H. Wang, W. J. Liu, S. J. Ding, and D. W. Zhang, “High-Performance Unannealed a-InGaZnO TFT With an Atomic-Layer-Deposited SiO2 Insulator,” IEEE Electron Device Lett. vol. 37, pp. 743-746, 2016.
    [21] X. Ding, H. Zhang, J. Zhang, J. Li, W. Shi, X. Jiang, and Z. Zhang, “IGZO thin film transistors with Al2O3 gate insulators fabricated at different temperatures,” Materials Science in Semiconductor Processing, vol. 29, pp. 69-75, 2015.
    [22] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, no. 10, pp. 5243-5275, 2001.
    [23] S. Mohsenifar and M. H. Shahrokhabadi, “Gate Stack High-κ Materials for Si-Based MOSFETs Past, Present, and Futures,” Microelectronics and Solid-State Electronics, vol. 4(1), pp. 12-24, 2015.
    [24] B. Cheng, M. Cao, R. Rao, A. Inani, P. Vande Voorde, W.M. Greene, J.M.C. Stork, Z. Yu, P.M. Zeitzoff, and J.C.S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Transactions on Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [25] V. Mikhelashvili and G. Eisenstein, “Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation,” Applied physics letters, vol. 89, no. 6, pp. 3256-3269, 2001.
    [26] H.L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High-k Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
    [27] H. Chakraborty and D. Misra, “Characterization of High- Gate Dielectrics using MOS Capacitors,” International Journal of Scientific and Research Publications, vol. 3, no. 12, pp. 1-5, 2013.
    [28] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
    [29] H.Y. Huang, Y.C. Huang, J.Y. SU, N.C. SU, C.K. Chiangl, C.H. Wu, and S.J. Wang, “High Performance and Low Driving Voltage Amorphous InGaZnO Thin-Film Transistors Using High-HfSiO Dielectrics,” 68th Device Research Conference, 2010.
    [30] S. Kim, M. H. Ham, B. Y. Oh, H. J. Kim, and J. M. Myoung, “High-κ TixSi1-xO2 thin films prepared by co-sputtering method,” Microelectronic Engineering, vol. 85, pp. 100-103, 2008.
    [31] J. C. Park, I.T. Cho, E.S. Cho, D. H. Kim, C.Y. Jeong, and H.I. Kwon, “Comparative Study of ZrO2 and HfO2 as a High-κ Dielectric for Amorphous InGaZnO Thin Film Transistors,” Journal of Nanoelectronics and Optoelectronics, vol. 9, pp. 67-70, 2014.
    [32] J. Robertson and R.M. Wallace, “High- materials and metal gates for CMOS applications,” Materials Science and Engineering: R: Reports, vol. 88, pp. 1-41, 2015.
    [33] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Physical Review B, vol. 65, no. 23, Artical ID 233106, 2002.
    [34] B. Cheng, M. C. Cao, R. Rao, A. Inani, P. V. Voorde, W. M. Greene, J. M. Stork, M. Zeitzoff, and J. C. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1537-1544, 1999.
    [35] H.L. Lu and D. W. Zhang, “Issues in High-k Gate Dielectrics and its Stack Interfaces,” High- Gate Dielectrics for CMOS Technology, Weinheim, Germany, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 31-59, 2012.
    [36] H. H. Tseng, The Progress and Challenges of Applying High-k/Metal-Gated Devices to Advanced CMOS Technologies, Solid State Circuits Technologies, J. W. Swart, Ed., InTech, 2010.
    [37] M. T. Ho, Y. Wang, R. T. Brewer, L. S. Wielunski, Y. J. Chabal, N. Moumen, and M. Boleslawski, “In situ infrared spectroscopy of hafnium oxide growth on hydrogen-terminated silicon surfaces by atomic layer deposition,” Applied physics letters, vol. 87, no. 13, p. 133103, 2005.
    [38] P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs,” Electrochemical and Solid-State Letters, vol. 11, no. 9, pp. H248-H251, 2008.
    [39] P. Taechakumput, S. Taylor, O. Buiu, R. Potter, and P. Chalker, “Optical and electrical characterization of hafnium oxide deposited by liquid injection atomic layer deposition,” Microelectronics Reliability, vol. 47, no. 4-5, pp. 825-829, 2007.
    [40] Y. Jung, W. Yang, C. Y. Koo, K. Song, and J. Moon, “High performance and high stability low temperature aqueous solution-derived Li–Zr co-doped ZnO thin film transistors,” Journal of Materials Chemistry, vol. 22, no. 12, pp. 5390-5397, 2012.
    [41] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radik, “High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors,” J. Appl. Phys. vol. 92, no. 9, pp. 5259-5263, 2002.
    [42] M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, J.S. Park, Jae Kyeong Jeong, Y.-G. Mo, and H. D. Kim, “High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper,” Applied physics letters, vol. 90, no. 21, pp. 212114, 2007.
    [43] A. Ortiz-Conde, F. J. Garcı́a Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A review of recent MOSFET threshold voltage extraction methods,” Microelectronics Reliability, vol. 42, no. 4-5, pp. 583-596, 2002.
    [44] J. H. Park, K. Jeon, S. Lee, S. Kim, S. Kim, I. Song, C. J. Kim, J. Park, Y. Park, D. M. Kim, and D. H. Kim, “Extraction of density of states in amorphous GaInZnO thin-film transistors by combining an optical charge pumping and capacitance–voltage characteristics,” IEEE Electron Device Letters, vol. 29, no. 12, pp. 1292-1295, 2008.
    [45] D. K. Schroder, Semiconductor material and device characterization, 2nd edition, Wiley, New York, pp. 367-369, 1998.
    [46] S. Jain, “Measurement of threshold voltage and channel length of submicron MOSFETs,” IEE Proceedings I Solid-State and Electron Devices, vol. 135, no. 6, pp. 135-162, 1988.
    [47] S. J. Yun, J. B. Koo, J. W. Lim, and S. H. Kim, “Pentacene-Thin Film Transistors with ZrO2 Gate Dielectric Layers Deposited by Plasma-Enhanced Atomic Layer Deposition,” Electrochemical and Solid-state Letters, vol. 10, no. 3, pp. H90-H93, 2007.
    [48] S. D. Brotherton, Introduction to Thin Film Transistors: Physics and Technology of TFTs, TFT Consultant, Forest Row, E. Sussex, UK, pp. 63-64, 2013.
    [49] K. Terada, K. Nishiyama, and K. I. Hatanaka., “Comparison of MOSFET-threshold-voltage extraction methods,” Solid- State Electron, vol. 45, pp. 35-40, 2001.
    [50] N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, “Electrical and optical properties of amorphous indium zinc oxide films,” Thin Solid Films, vol. 496, no. 1, pp. 99-103, 2006.
    [51] A. Bolognesi, M. Berliocchi, M. Manenti, A. DiCarlo, P. Lugli, K. Lmimouni, and C. Dufour, “Effects of Grain Boundaries, Field-Dependent Mobility, and Interface Trap States on the Electrical Characteristics of Pentacene TFT,” IEEE Transactions on Electron Devices, vol. 51, no. 12, pp. 1997-2003, 2004.
    [52] K. Ebata, S. Tomai, Y. Tsuruma, T. Iitsuka, S. Matsuzaki, and K. Yano, “High-Mobility Thin-Film Transistors with Polycrystalline In–Ga–O Channel Fabricated by DC Magnetron Sputtering,” Applied Physics Express, vol. 5, no. 1, pp. 011102, 2012.
    [53] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons. Inc., New Jersey, 2006.
    [54] A. C. Tickle, “Thin-Film Transistors-A New Approach to Microelectronics,” Wiley, New York, 1969.
    [55] B. E. Deal, “Standardized Terminology for Oxide Charges Associated with Thermally Oxidized Silicon,” IEEE Transactions on Electron Devices, vol. 27, no. 3, pp. 606-608, 1980.
    [56] S. M. Sze and M. K. Lee, “Semiconductor Devices Physics and Technology,” 3rd edition, Hoboken, N.J., Wiley, pp. 259-281, 2006.
    [57] A. Goetzberger, E. Klausmann, and M. J. Schulz, “Interface states on semiconductor/insulator interface surfaces,” Critical Reviews in Solid State and Material Sciences, vol. 6, no. 1, pp. 1-43, 1976.
    [58] Y. C. Chiu, C. Y , Chang, S. S. Yen, C. C. Fan, H. H. Hsu, C. H. Cheng, P. C. Chen, P. W. Chen, G. L. Liou, M. H. Lee, C. Liu, and W. C. Chou, “On the variability of threshold voltage window in gate-injection versatile memories with Sub-60mV/dec subthreshold swing and 1012-cycling endurance,” IEEE International Reliability Physics Symposium (IRPS), 2016.
    [59] C. L. Fan, F. P. Tseng, B. J. Li, Y. Z. Lin, S. J. Wang, W. D. Lee, and B. R. Huang, “Improvement in reliability of amorphous indium–gallium–zinc oxide thin-film transistors with Teflon/SiO2bilayer passivation under gate bias stress,” Japanese Journal of Applied Physics, vol. 55, no. 2S, pp. 02BC17, 2016.
    [60] A. Suresh, “Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors,” Appl. Phys. Lett., Vol. 92, pp. 033502, 2008.
    [61] E. N. Cho, J. H. Kang, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” IEEE Transactions on Device and Materials Reliability, vol.11 no. 1, pp. 112-117, 2011.
    [62] C. V. Berkel and M. J. Powell, “Resolution of amorphous silicon thin-film transistor instability mechanisms using ambipolar transistors,” Applied Physics Letters, vol. 51, no. 14, pp. 1094-1096, 1987.
    [63] K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, Y. G. Mo, J. H. Jeong, J. Y. Kwon, M. K. Ryu, S. Y. Lee, R. Choi, and J. K. Jeong, “The Effect of Density-of-State on the Temperature and Gate Bias-Induced Instability of InGaZnO Thin Film Transistors,” Journal of The Electrochemical Society, vol. 157, no. 11, pp. H983-H986, 2010.
    [64] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng, and Y. H. Tai, “Environment-dependent thermal instability of sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors,” Applied Physics Letters, vol. 98, no. 15, pp. 152109, 2011.
    [65] J. K. Jeong, S. Yang, D. H . Cho, S. H. K. Park, C. S. Hwang, and K. I. Cho, “Impact of device configuration on the temperature instability of Al–Zn–Sn–O thin film transistors,” Applied Physics Letters, vol. 95, no. 12, pp. 123505, 2009.
    [66] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, “Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment including thermal-induced hole trapping phenomenon under gate bias stress,” Appl. Phys. Lett., vol. 100, no. 18, pp. 182103, 2012.
    [67] Xinyuan Zhao and David Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Physical Review B, vol. 65, no. 7, pp. 075105, 2002.
    [68] H. Kim, P. McIntyre, C. Chui, K. Saraswat, and S. Stemmer, “Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer,” Journal of Applied Physics, vol. 96, no. 6, pp. 3467-3472, 2004.
    [69] C. H. Hung, S. J. Wang, P. Y. Liu, C. H. Wu, N. S. Wu, H. P. Yan, and T. H. Lin, “Using co-sputtered ZrSiOx gate dielectrics to improve mobility and subthreshold swing of amorphous IGZO thin-film transistors,” 74th Annual Device Research Conference (DRC), 2016.
    [70] H. Kim, W. C. Choi, “Controlled Zr doping for inkjet-printed ZTO TFTs,” Ceramics International, vol. 43, no. 6, pp. 4775-4779, 2017.
    [71] P. Xiao, T. Dong, L. Lan, Z. Lin, W. Song, E. Song, S. Sun, Y. Li, P. Gao, D. Luo, M. Xu, J. Peng, “High-mobility flexible thin-film transistors with a low-temperature zirconium-doped indium oxide channel layer,” physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 6, pp. 493-497, 2016.
    [72] C. X. Lin, “Fabrication of Thin-film Transistors Basaed on ZrAlO Gate Dielectrics and Ti-IGZO Channels by Co-sputtering Processes,” 2018.
    [73] J. Raja, K. Jang, N, Balaji, W, Choi, T. Thuy Trinh, and J. Yi, “Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors,” Applied Physics Letters, vol. 102, no. 8, pp. 083505, 2013.
    [74] D. B. Ruan, P. T. Liu, Y. C. Chiu, M. C. Yu, T. C. Chien, Y. H. Chen, P. Y. Kuo, and S. M. Sze, “Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition,” Thin Solid Films, vol. 660, pp. 885-890, 2018.
    [75] S. Y. Lee, D. H. Kim, E. Chong, Y. W. Jeon, and D. H. Kim, “Effect of channel thickness on density of states in amorphous InGaZnO thin film transistor,” Applied Physics Letters, vol. 98, no. 12, pp. 122105, 2011.
    [76] B. Y. Su, S. Y. Chu, Y. D. Juang, and S. Y. Liu, “Effects of Mg doping on the gate bias and thermal stability of solution-processed InGaZnO thin-film transistors,” Journal of Alloys and Compounds, vol. 58, pp. 10-14, 2013.
    [77] W. S. Choi, H. Jo, M. S. Kwon, and B. J. Jung, “Control of electrical properties and gate bias stress stability in solution-processed a-IZO TFTs by Zr doping,” Current Applied Physics, vol. 14, no. 12, pp. 1831-1836, 2014.
    [78] B.Y. Su, S. Y. Chu, and Y. D. Juang, “Improved Electrical and Thermal Stability of Solution-Processed Li-Doped ZnO Thin-Film Transistors,” IEEE Transactions on Electron Devices, vol. 59, no. 3, pp. 700-704, 2012.

    下載圖示 校內:2022-01-01公開
    校外:2022-01-01公開
    QR CODE