簡易檢索 / 詳目顯示

研究生: 陳彥臻
Chen, Yen-Chen
論文名稱: 以最佳化微光流體分束器的形狀與流動參數來改進分束器傳輸
Improving splitter transmission by optimizing the shape and flow parameters of a micro optofluidic beam splitter
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 105
中文關鍵詞: 微光流體分束器漸進式折射率最佳化方法高傳輸
外文關鍵詞: micro optofluidic splitter, gradient refractive index, optimal method, high transmission
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出使用漸進式折射率分布的三維微光流體分束器,使光束分束後向中央平面聚焦、提高傳輸。以氯化鈣水溶液與去離子水作為包覆流體與核心流體,包覆流體注入口深度較核心流體注入口淺,兩流體注入後會在主流道形成馬鞍形折射率分布,使入射光向兩側分束後向中央平面聚焦、提高傳輸。本文使用數值模擬軟體模擬速度及濃度場,再自行開發C++程式模擬光線在不同流道幾何與流動參數下,受折射率分布影響之軌跡,並使用Matlab的最佳化工具尋求主流道長度、注入口深度比、流率比與總流率之最佳參數組合,得到微光流體分束器的最好傳輸。本文使用微影製程製作分束器,選用最佳參數組合進行實驗,以數位單眼連接可變焦顯微觀察系統,由流道上方進行觀察與拍攝,並使用光纖於流道後方量測光束分束後聚焦的能量大小,由實驗結果與數值模擬結果相近,得知模擬可靠。模擬結果顯示三維流道形成之折射率分布使其傳輸比二維流道大。深度越淺的包覆流體注入口有越好的傳輸,但過淺的深度會使光線無法完全進入主流道。主流道長度對光束分束與傳輸影響不大,但光線在越長的主流道受漸進式折射率影響時間越長,偏折程度越大。越小的流率比會有越大的分束角度。總流率對傳輸有明顯影響,適當的總流率會使傳輸更好。各項參數組合起來的微光流體分束器,無法同時得到最大的分束角度與傳輸,但傳輸最高與最低時分束角度差距不大。

    In this work, we proposed a three-dimensional (3D) micro optofluidic beam splitter based on liquid gradient refractive index. Calcium chloride solution and deionized water are applied as cladding and core fluids, respectively. The depth of cladding fluid inlet is set to be shallower to form saddle-like refractive index distribution, which splits the incident beam into two beams and the split beams converge to the middle horizontal plane. ANSYS Fluent and self-developed codes are used to simulate flow field and light propagation under different geometry and flow parameters. Optimization tools of Matlab are used to optimize the parameters to enhance the transmission. Validity of simulations is shown by experiment. We find the following trends from the results. (i) 3D structure of a splitter is necessary for improving transmission. (ii) Lower depth ratio and proper total flow rate causes higher transmission, lower flow rate ratio causes higher split angle, and length of main channel does little influence on transmission and split angle. (iii) The largest split angle and the highest transmission cannot be obtained at the same time, but the difference of split angle is not significant for a case with the highest or lowest transmission.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 符號說明 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3 研究動機 4 1.4 本文架構 4 第二章 微光流體分束器設計、模擬與最佳化 6 2.1 分束器流道設計 6 2.2 流場數值模擬 7 2.2.1 流場假設與統御方程式 8 2.2.2 邊界條件 9 2.2.3 流場混合模擬 10 2.3 光追跡模擬 11 2.3.1 統御方程式 11 2.3.2 初始入射光位置與方向 13 2.3.3 折射率之重建 14 2.3.4 判斷光線接觸流道邊界 15 2.3.5 分束器效能評估參數 17 2.4 多目標函數最佳化 18 2.4.1 田口法 19 2.4.2 目標函數模型重建 20 2.4.3 基因演算法 22 第三章 微流道製作與觀測儀器架設 24 3.1 微光流體分束器微流道製作 24 3.1.1 母模製作 24 3.1.2 微流道翻模與管線黏合 27 3.2 觀測儀器架設 27 3.2.1 連接光源 27 3.2.2 連接微量式注射幫浦 28 3.2.3 影像拍攝 28 3.2.4 分束後能量量測 28 第四章 結果與討論 30 4.1 流場網格測試 30 4.2 光追跡程式測試 31 4.2.1 MLS取樣點數測試 31 4.2.2 MLS基底向量元素數目測試 32 4.2.3 入射光包數測試 32 4.3 流道幾何與流率參數初步最佳化 33 4.3.1 主流道長度與深度比對分束的影響 33 4.3.2 流率比與總流率對分束的影響 34 4.4 多目標最佳化 35 4.4.1 目標函數模型重建 35 4.4.2 基因演算法結果 36 4.5 實驗結果 38 4.6 二維與三維流道的結果比較 39 第五章 結論與未來展望 40 5.1 結論 40 5.2 未來展望 40 參考文獻 42

    [1] V. R. Horowitz, D. D. Awschalon, and S. Pennathur, "Optofluidics: field or technique?," Lab on a Chip, vol. 8, pp. 1856-1863, 2008.
    [2] A. Banas, D. Palima, F. Pedersen, and J. Glückstad, "Development of a compact bio-optofluidic cell sorter," in Proceedings of SPIE, 2012, 82740N1 (6 pages).
    [3] C. Carrissemoux, A. Bañas, D. Palima, M. Villangca, and J. Glückstad, "Investigating cell sorting and analysis of the proprietary cell-‐BOCS platform," in Danish Physics Society Annual Meeting 2016, Middelfart, Denmark, 2016.
    [4] A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. Etzold, A. C. Jones, P. J. Sadler, et al., "Photonic crystal fibres for chemical sensing and photochemistry," Chemical Society Reviews, vol. 42, pp. 8629-8648, 2013.
    [5] H. Aran, D. Salamon, T. Rijnaarts, G. Mul, M. Wessling, and R. Lammertink, "Porous photocatalytic membrane microreactor (P2M2): a new reactor concept for photochemistry," Journal of Photochemistry and Photobiology A: Chemistry, vol. 225, pp. 36-41, 2011.
    [6] D. Erickson, D. Sinton, and D. Psaltis, "Optofluidics for energy applications," Nature Photonics, vol. 5, pp. 583-590, 2011.
    [7] W. Bishara, S. O. Isikman, and A. Ozcan, "Lensfree optofluidic microscopy and tomography," Annals of biomedical engineering, vol. 40, pp. 251-262, 2012.
    [8] D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, "Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy," Optics letters, vol. 35, pp. 4066-4068, 2010.
    [9] N.-T. Nguyen, "Micro-optofluidic Lenses: A review," Biomicrofluidics, vol. 4, 031501 (15 pages), 2010.
    [10] C. Li and H. Jiang, "Electrowetting-driven variable-focus microlens on flexible surfaces," Applied Physics Letters, vol. 100, 231105 (4 pages), 2012.
    [11] Y. Seow, S. Lim, and H. Lee, "Optofluidic variable-focus lenses for light manipulation," Lab on a Chip, vol. 12, pp. 3810-3815, 2012.
    [12] J. Shi, Z. Stratton, S.-C. S. Lin, H. Huang, and T. J. Huang, "Tunable optofluidic microlens through active pressure control of an air–liquid interface," Microfluidics and Nanofluidics, vol. 9, pp. 313-318, 2010.
    [13] S. K. Tang, C. A. Stan, and G. M. Whitesides, "Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel," Lab on a Chip, vol. 8, pp. 395-401, 2008.
    [14] X. Mao, S.-C. S. Lin, M. I. Lapsley, J. Shi, B. K. Juluri, and T. J. Huang, "Tunable liquid gradient refractive index (L-GRIN) lens with two degrees of freedom," Lab on a Chip, vol. 9, pp. 2050-2058, 2009.
    [15] H. Huang, X. Mao, S.-C. S. Lin, B. Kiraly, Y. Huang, and T. J. Huang, "Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing," Lab on a Chip, vol. 10, pp. 2387-2393, 2010.
    [16] C. Song, N.-T. Nguyen, A. K. Asundi, and S.-H. Tan, "Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration," Optics Letters, vol. 35, pp. 327-329, 2010.
    [17] D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, "Diffusion-controlled optical elements for optofluidics," Applied Physics Letters, vol. 87, 181105 (3 pages), 2005.
    [18] Y. Yang, L. K. Chin, J. M. Tsai, D. P. Tsai, N. I. Zheludev, and A. Q. Liu, "Transformation optofluidics for large-angle light bending and tuning," Lab on a Chip, vol. 12, pp. 3785-3790, 2012.
    [19] L. Li, X. Zhu, L. Liang, Y. Zuo, Y. Xu, Y. Yang, et al., "Switchable 3D optofluidic Y-branch waveguides tuned by Dean flows," Scientific Reports, vol. 6, 38338 (10 pages), 2016.
    [20] 林定遠, "產生大分離角且垂直聚集的光束的光流體分束器," 國立成功大學機械工程研究所碩士論文, 台南市, 2016.
    [21] N. Subrahmanyam, B. Lal, and M. Avadhanulu, A Text Book of Optics (me), 12th ed.: S. Chand, New Delhi, 2004.
    [22] X. L. Mao, J. R. Waldeisen, B. K. Juluri, and T. J. Huang, "Hydrodynamically tunable optofluidic cylindrical microlens," Lab on a Chip, vol. 7, pp. 1303-1308, 2007.
    [23] P. A. Lyons and J. F. Riley, "Diffusion coefficients for aqueous solutions of calcium chloride and cesium chloride at 25," Journal of the American Chemical Society, vol. 76, pp. 5216-5220, 1954.
    [24] R. L. David, "CRC Handbook of Chemistry and Physics, Internet Version 2005," ed: CRC Press, Boca Raton, FL, 2005.
    [25] A. Sharma, D. V. Kumar, and A. K. Ghatak, "Tracing rays through graded-index media - a new method," Applied Optics, vol. 21, pp. 984-987, 1982.
    [26] J. R. Dormand and P. J. Prince, "A family of embedded Runge-Kutta formulae," Journal of Computational and Applied Mathematics, vol. 6, pp. 19-26, 1980.
    [27] A. Nealen and T. Darmstadt, "An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation," Computer Methods in Applied Mechanics and Engineering, vol. 130, 150 (3 pages), 2004.
    [28] J. L. Bentley, "Multidimensional binary search trees used for associative searching," Communications of the ACM, vol. 18, pp. 509-517, 1975.
    [29] T. Most and C. Bucher, "A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions," Structural Engineering and Mechanics, vol. 21, pp. 315-332, 2005.
    [30] A. Sharma and A. K. Ghatak, "Ray tracing in gradient-index lenses: computation of ray–surface intersection," Applied Optics, vol. 25, pp. 3409-3412, 1986.
    [31] M. F. Modest, Radiative heat transfer, 3rd ed.: Academic press, New York, 2013.
    [32] C. A. Cortes-Quiroz, M. Zangeneh, and A. Goto, "On multi-objective optimization of geometry of staggered herringbone micromixer," Microfluidics and Nanofluidics, vol. 7, pp. 29-43, 2009.
    [33] H.-H. Lee, Taguchi methods: principles and practices of quality design, 2nd ed.: Gau Lih Book Co., Ltd, New Taipei City, Taiwan, 2004.
    [34] A. Afzal and K.-Y. Kim, "Multi-objective optimization of a passive micromixer based on periodic variation of velocity profile," Chemical Engineering Communications, vol. 202, pp. 322-331, 2015.
    [35] A. Afzal and K.-Y. Kim, "Multiobjective optimization of a micromixer with convergent–divergent sinusoidal walls," Chemical Engineering Communications, vol. 202, pp. 1324-1334, 2015.
    [36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, vol. 6, pp. 182-197, 2002.

    下載圖示 校內:2022-07-25公開
    校外:2022-07-25公開
    QR CODE