| 研究生: |
盧冠廷 Lu, Kuan-Ting |
|---|---|
| 論文名稱: |
流體床觸媒式化學氣相沈積法合成奈米碳材料 Synthesis of carbon nano-materials using catalytic chemical vapor deposition process in fluidized bed |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 奈米碳纖維 |
| 外文關鍵詞: | carbon nanofibers |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣相成長碳纖維(vapor grown carbon fiber, VGCF)在一百年前便開始發展了,然而直到90年代奈米碳管(carbon nanotube, CNT)的出現,則再度引起各界對於VGCF的興趣。因為VGCF的製程方式與CNT非常相似,只需適當地改變一些製程參數即可分別合成出VGCF與CNT。近代由於奈米科技的來臨,因此有了氣相成長奈米碳纖維(vapor grown carbon nanofiber, VGCNF or VGNF)這新稱號。由於VGNF的直徑介在CNT與VGCF之間,所以VGNF同時擁有CNT與VGCF兩者的特性。
本研究以流體床法合成奈米碳纖維,實驗主要將重點放在催化劑(或稱觸媒)上,分別以硫化亞鐵與二茂鐵兩種材料作為催化劑。兩種催化劑分別以不同方式來合成奈米碳纖維,硫化亞鐵是以氧化鋁坩堝裝載,直接懸掛在爐體內合成碳纖維;至於二茂鐵則是先以有機溶劑溶解後,再以氫氣或甲烷/氫氣作為承載氣體,以吹氣泡的方式將催化劑由爐外導入爐內合成碳纖維。
根據實驗的結果可以知道,以硫化亞鐵合成之碳纖維,其外觀形貌五花八門,而且纖維直徑多為微米級尺度,但是若在坩堝內裝載適量的硫化亞鐵,約在3g以上,而且反應溫度在1179℃~1192℃的範圍內,反應時間在2小時以上,則可以在反應完成後的硫化亞鐵塊表面,得到表面光滑平整的碳纖維;至於以二茂鐵合成之碳纖維,直徑多為奈米級尺度,而且外觀形貌均不像硫化亞鐵所合成之碳纖維那樣地奇特。同時,實驗產物中除了奈米碳纖維之外還有另一產物生成,即碳顆粒。以二茂鐵合成碳纖維的製程中,分別使用甲苯與異丙醇兩種碳氫有機溶液作為合成碳纖維所需之碳源。以甲苯作為碳源所合成之奈米碳纖維,其平均直徑約為218nm,而抗高溫氧化溫度約為595℃;另外以異丙醇作為碳源所合成之奈米碳纖維,其平均直徑約為233nm,而抗高溫氧化溫度約為585℃。由此可知,以甲苯所合成之奈米碳纖維除了直徑較小之外,還擁有較強的抗高溫氧化能力。
Vapor grown carbon fibers (VGCF) were found about one hundred year ago. However, recent interest in carbon nanotubes (CNT) has generated renewed interests in VGCF due to the similarities in the growth processes. By simply reducing the growth time, the diameter of carbon fiber can be reduced to form vapor grown carbon nanofibers (VGCNF or VGNF). The diameter of VGNF is between that of VGCF and CNT. This gives VGNFcomparable characterics to VGCF or CNT.
In this study, we have used a fluidied bed method to grow VGNF. Ferrous sulfide and ferrocene were used as catalyst precursor. Ferrous sulfide was placed in an Al2O3 crucible which was hanged in the reactor (chamber). On the other hand, ferrocene was dissolved in hydrocarbon solution and introduced into the reactor by bubblering H2 or CH4/H2.
VGCF synthesized by using ferrous sulfide as catalyst precursor would have particular morphology and diameter in micrometer scale. However, VGCF with smooth surface would only be obtained from surface of bulk ferrous sulfide under the experimental condition as follows: the addition of ferrous sulfide is more than 3 g and the overall reaction is between 1179℃~1192℃ maintained over 2 hours. On the contrary, VGNF synthesized by using ferrocene as catalyst precursor would have common morphology and diameter in nanometer scale. Besides, carbon particles were also obtained in the same condition. Respectively, toluene and isopropanol serve as both the carbon source for VGNF formation and the solvent for ferrocene. The average diameter of VGNF synthesized by using toluene as carbon source is about 218 nm, and the anti-oxidation temperature is about 595℃. On the other hand, the average diameter of VGNF synthesized by using isopropanol as carbon source is about 233 nm, and the anti-oxidation temperature is about 585℃. Thus, VGNF synthesized by using toluene as carbon source has smaller diameter and higher anti-oxidation temperature.
參 考 文 獻
[1] http://www.dfmg.com.tw/member/news/s-chem/001208/news.asp-id
=19291.htm
[2] M. L. Lake and R. D. Jacobsen, Cost Modeling of VGCF, ASI R-C9706 (1997).
[3] J. Herermans and C. P. Beetz Jr., Thermal conductivity and thermopower of vapor-grown carbon fibers, Phys. Rev. B, 32, 1981-1986 (1985).
[4] J. Herermans, Electrical conductivity of vapor-grown carbon fibers, Carbon, 23, 431-436 (1985).
[5] G. G. Tibbetts, Vapor-grown carbon fibers. Status and prospects, Carbon, 27, 745-747 (1989).
[6] R. L. Jacobsen, T. M. Tritt, J. R. Guth, A. C. Ehrlich, and D. J. Gillespie, Mechanical properties of vapor-grown carbon fibers, Carbon, 33, 1217-1221 (1995).
[7] G. P. Daumit, Summary of panel discussion, Carbon fiber industry: current and future, Carbon, 27, 759-764 (1989).
[8] A. Madronero and C. Merino, Some geometrical singularities in the characterization of vapor grown carbon fibers using laser diffraction technique, Mater. Res. Bull, 33, 1503-1515 (1998).
[9] J. I. Paredes, A. Martinez-Alonso, and J. M. D. Tascon, Oxygen plasma modification of submicron vapor grown carbon fibers as studied by scanning tunneling microscopy, Carbon, 40, 1101-1108 (2002).
[10] M. Ishioka, T. Okada, and K. Matsubara, Electrical resistivity, magnetoresistance, and morphology of vapor-grown carbon fibers prepared in a mixture of benzene and Linz-Donawitz converter gas by floating catalyst method, J. Mater. Res., 8, 1866-1874 (1993).
[11] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H. W. Kroto, and A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers, Carbon, 33, 873-881 (1995).
[12] Y. Y. Li, K. Mochidzuki, A. Sakoda, and M. Suzuki, Activation studies of vapor-grown carbon fibers with supercritical fluids, Carbon, 39, 2143-2150 (2001).
[13] M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. H. Kiang, and M. S. Dresselhaus, Stacking nature of grapheme layers in carbon nanotubes and nanofibers, J. Phys. Chem. Solids, 58, 1707-1712 (1997).
[14] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991).
[15] 稻垣道夫、大谷杉郎與大谷朝男共著;賴耿揚譯,碳材料碳纖維工學,復漢出版社,碳纖維篇, 44-52 (1977).
[16] T. Koyama and M. Endo, Electrical resistivity of caron fibers prepared from benzene, Jpn. J. Appl. Phys, 13, 1175-1176 (1974).
[17] T. Koyama and M. Endo, Structure and properties of graphitized carbon fiber, Jpn. J. Appl. Phys, 13, 1933-1939 (1974).
[18] A. Oberlin, M. Endo and T. Koyama, Filamentous growth of carbon through benzene decomposition, Journal of crystal growth, 32, 335-349 (1976).
[19] J. S. Speck, M. Endo, and M. S. Dresselhaus, Structure and intercalation of thin benzene derived carbon fibers, Journal of crystal growth, 94, 834-848 (1989).
[20] G. G. Tibbetts, Carbon fibers produced by pyrolysis of nature gas in stainless steel tubes, Appl. Phys. Lett., 42, 666-668 (1983).
[21] F. Benissad, P. Gadelle, M. Coulon, and L. Bonnetain, Formation de fibers de carbone a partir du menthane: I croissane catalytique et epaississement pyrolytique, Carbon, 26, 61-69 (1988).
[22] G. G. Tibbetts, D. W. Gorkiewicz, and R. L. Alig, A new reactor for growing carbon fibers from liquid- and vapor-phase hydrocarbon, Carbon, 31, 809-815 (1993).
[23] M. Ishioka, T. Okada, K. Matsubara, and M. Endo, Formation of vapor-grown carbon fibers in CO-CO2-H2 mixtures, II. Influence of catalyst, Carbon, 30, 865-868 (1992).
[24] M. Endo, Grow carbon fibers in the vapor phase, Chemtech, 18, 568-576 (1988).
[25] K. P. De Jong and J. W. Geus, Carbon nanofibers: catalytic synthesis and
applications, Catal. Rev.-Sci. Eng., 42, 481-510 (2000).
[26] T. Masuda, S. R. Mukai, and K. Hashimoto, The liquid pulse injection technique: A new method to obtain long vapor grown carbon fibers at high growth rates, Carbon, 31, 783-787 (1993).
[27] V. D. Blank, E. V. Polyakov, D.V. Batov, B. A. Kulnitskiy, U. Bangert, A. Gutierrez-Sosa, A.J. Harvey, and A. Seepujak, Formation of N- containing C-nanotubes and nanofibers by carbon resistive heating under high nitrogen pressure, Diamond and Related Materials, 12, 864-869 (2003).
[28] K. Hernadi, A. Fonseca, J. B. Nagy, A. Fudala, D. Bernaerts, and I. Kiricsi, Catalytic production of carbon nanofibers over iron carbide doped Sn2+, Applied Catalysis A: General, 228, 103-113 (2002).
[29] T. V. Hughes and C. R. Chambers, U.S. Patent, 405480 (1889).
[30] W. R. Davies, R. J. Slawson, and G. R. Rigby, An unusual form of carbon, Nature, 171, p756 (1953).
[31] L. J. E. Hofer, E. Sterling and J. T. McCartney, Structure of the carbon deposited from carbon monoxide on iron, cobalt and nickel, J. Phys. Chem., 59, 1153 (1955)
[32] H. F. Kauffman, Pittsburgh, D. J. Griffiths, B. Falls and J. S. Mackay, U.S. Patent, 2796331 (1957).
[33] G. G. Tibbetts, C. A. Bernardo, D. W. Gorkiewicz and R. L. Alig, Role of sulfur in the production of carbon fibers in the vapor phase, Carbon, 32, 569-576 (1994).
[34] S. D. Robertson, Graphite formation from low temperature pyrolysis of methane over some transition metal surfaces, Nature, 221, 1044 (1969).
[35] R. T. K. Baker, M. A. Barber, P. S. Harris, F. S. Feates and R. J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, Journal of catalysis, 26, 51-62 (1972).
[36] A. Oberlin, M. Endo and T. Koyama, High resolution electron microscope observations of graphitized carbon fibers, Carbon, 14, 133-135 (1976).
[37] P. M. Ajayan and S. Iijima, Smallest carbon nanotube, Nature, 358, 23 (1992).
[38] M. Endo and H. W. Kroto, Formation of carbon nanofibers, J. Phys. Chem., 96, 6941-6944 (1992).
[39] N. M. Rodriguez, M. S. Kim and R. T. K. Baker, Carbon nanofibers: A unique catalyst support medium, J. Phys. Chem., 98, 13108-13111 (1994).
[40] L. P. Biro’, C.A. Bernardo, G. G. Tibbetts and Ph. Lambin, Carbon filaments and nanotubes: common origins, differing applications?, Kluwer academic publishers, Dordrecht/Boston/London, p51-61 (2001).
[41] A. Hoque, M. K. Alam and G. G. Tibbetts, Synthesis of catalyst particles in a vapor grown carbon fiber reactor, Chemical engineering science, 56, 4233-4243 (2001).
[42] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons, Applied Physics Letters, 72, 3282-3284 (1998).
[43] L. Ci, Y. Li, B. Wei, J. Liang, C. Xu and D. Wu, Preparation of carbon nanofibers by the floating catalyst method, Carbon, 38, 1933-1937 (2000).
[44] W. L. Holstein, The roles of ordinary and Soret diffusion in the metal-catalyzed formation of filamentous carbon, Journal of catalysis, 152, 42-51 (1995).
[45] M. Ishioka, T. Okada, and K. Matsubara, Preparation of vapor-grown carbon fibers by floating catalyst method in Linz-Donawitz converter gas: influence of catalyst size, Carbon, 31, 699-703 (1993).
[46] R. T. K. Baker, P. S. Harris, R. B. Thomas, and R. J. Waite, Formation oh filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene, J. Catal., 30, 86-95 (1973).
[47] R. T. K. Baker, J. J. Chludzinski, and C. R. F. Lund, Further studies of the formation of filamentous carbon from the interaction of supported iron particles with acetylene, Carbon, 25, 295-303 (1987).
[48] R. T. K. Baker, J. J. Chludzinski, N. S. Dudash, and A. J. Simoens, The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum, Carbon, 21, 463-468 (1983).
[49] G. G. Tibbetts, M. G. Devuor, and E. J. Rodda, An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles, Carbon, 25, 367-375 (1987).
[50] M. Audier, A. Oberlin, M. Oberlin, M. Coulon, and L. Bonnetain, Morphology and crystalline order in catalytic carbons, Carbon, 19, 217-224 (1981).
[51] G. G. Tibbetts and M. P. Balogh, Increase in yield of carbon fibers grown above the iron/carbon eutectic, Carbon, 37, 241-247 (1999).
[52] J. Rostrup-Nielsen and D. L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, Journal of catalysis, 48, 155-165 (1977).
[53] T. Kato, K. Haruta, K. Kusakabe and S. Morooka, Formation of vapor-grown carbon fibers on a substrate, Carbon, 30, 989-994 (1992).
[54] 成會明編, 張勁燕校訂, 奈米碳管, 五南圖書出版公司, p594~595 (2004).
[55] Y. J. Yoon and H. K. Baik, Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition, Diamond and related materials, 10, 1214-1217 (2001).
[56] G. G. Tibbetts, Why are carbon filaments tubular ?, Journal of crystal growth, 66, 632-638 (1984).
[57] G. Yan, H. Li, Z. Hao and H. Han, Formation of nano-combi carbon fibers on a planar silicon substrate using (TiO)SO4 as a catalyst precursor, Carbon, 40, 787-803 (2002).
[58] R. T. K. Baker, Catalytic growth of carbon filaments, Carbon, 27, 315-323 (1989).
[59] N. M. Rodriguez, A review of catalytically grown carbon nanofibers, J. Mater. Res., 8, 3233-3250 (1993).
[60] N. M. Rodriguez, A. Chambers and R. T. K. Baker, Catalytic engineering of carbon nanostructures, Langmuir, 11, 3862-3866 (1995).
[61] C. A. Bessel, K. Laubernds, N. M. Rodriguez and R. T. Baker, Graphite nanofibers as an electrode for fuel cell applications, The journal of physical chemistry B, 105, 1115-1118 (2001).
[62] C. Park and R. T. K. Baker, Catalytic behavior of graphite nanofibers supported nickel particles. 2. The influence of the nanofiber structure, The journal of physical chemistry B, 102, 5168-5177 (1998).
[63] H. Terrones, T. Hayashi, M. Munoz-Navia, M. Terrones, Y. A. Kim, N. Grobert, R. Kamaladaran, J. Dorantes-Davila, R. Escudero, M. S. Dresselhaus and M. Endo, Graphitic cones in palladium catalysed carbon nanofibers, Chemical physics letters, 343, 241-250 (2001).
[64] T. Kato, T. Matsumoto, T. Saito, J. I. Hayashi, K. Kusakabe, and S. Morooka, Effect of carbon source on formation of vapor-grown carbon fiber, Carbon, 31, 937-940 (1993).
[65] N. M. Rodriguez, M. S. Kim, and R. T. K. Baker, Promotional effect of carbon monoxide on the decomposition of ethylene over an iron catalyst, J. Catal., 144, 93-108 (1993).
[66] A. Tanaka, S. H. Yoon, and I. Mochida, Formation of fine Fe-Ni particles for the non-supported catalytic synthesis of uniform carbon nanofibers, Carbon, 42, 1285-1292 (2004).
[67] H. Neumayer and R. Haubner, Formation of carbon-nano-fibers and carbon-nanotubes with a vertical flow-reactor, Diamond and Related Materials, 13, 1191-1197 (2004).
[68] N. Krishnankutty, N. M. Rodriguez, and R. T. K. Baker, Effect of copper on the decomposition of ethylene over an iron catalyst, Journal of Catalysis, 158, 217-227 (1996).
[69] T, Kato, K. Kusakabe, and S. Morooka, Process of formation of vapour-grown carbon fibers by gas-phase reaction using ultrafine iron catalyst particles, Journal of Materials Science Letters, 11, p674 (1992).
[70] R. G. Olsson and E. T. Turkdogan, Catalytic effect of iron on decomposition of carbon monoxide: II. Effect of additions of H2, H2O, CO2, SO2 and H2S, Metallurgical Transactions, 5, p21 (1974).
[71] G. A. Jablonski, F. W. Geurts, A. Sacco, and R. R. Biederman, Carbon deposition over Fe, Ni, and Co foils from CO-H2-CH4-CO2-H2O, CO-CO2, CH4-H2, and CO-H2-H2O gas mixtures. I. Morphology, Carbon, 30, 87-98 (1992).
[72] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method, Carbon, 39, 329-335 (2001).
[73] S. R. Mukai, T. Masuda, Y. Matsuzawa, and K. Hashimoto, The influence of catalyst particle size distribution on the yield of vapor-grown carbon fibers produced using the liquid pulse injection technique, Chemical Engineering Science, 53, 439-448 (1998).
[74] W. B. Downs and R. T. K. Baker, Novel carbon fiber-carbon filament structures, Carbon, 29, 1173-1179 (1991).
[75] A. Chambers, N. M. Rodriguez, and R. T. K. Baker, Influence of copper on the structural characteristics of carbon nanofibers produced from the cobalt-catalyzed decomposition of ethylene, Journal of Materials Research, 11, 430-438 (1996).
[76] Y. Y. Fan, F. Li, H. M. Cheng, G. Su, Y. D. Yu and Z. H. Shen, Preparation, morphology, and microstructure of diameter-controllable vapor-grown carbon nanofibers, Journal of Materials Research, 13, 2342-2346 (1998).
[77] H. Huang, H. Kajiura, Y. Murakami, and M. Ata, Metal sulfide catalyzed growth of carbon nanofibers and nanotubes, Carbon, 41, 615-618 (2003).
[78] W. C. Ren and H. M. Cheng, Herringbone-type carbon nanofibers with a small diameter and large hollow core synthesized by the catalytic decomposition of methane, Carbon, 41, 1657-1660 (2002).
[79] H. Ago, S. Ohshima, K. Uchida, and M. Yumura, Gas-phase synthesis of single-wall carbon nanotubes from colloidal solution of metal nanoparticles, The Journal of Physical Chemistry B, 105, 10453-10456 (2001).
[80] M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interplay between sulfur adsorption and carbon deposition on cobalt catalysts, Journal of Catalysis, 143, 449-463 (1993).
[81] Y. Y. Fan, H. M. Cheng, Y. L. Wei, G. Su and Z. H. Shen, The influence
of preparation parameters on the mass production of vapor-grown carbon nanofibers, Carbon, 38, 789-795 (2000).
[82] M. Ishioka, T. Okada, and K. Matsubara, Formation and characteristics of vapor grown carbon fibers prepared in Linz-Donawitz converter gas, Carbon, 30, 975-979 (1992).
[83] M. Ishioka, T. Okada, and K. Matsubara, Preparation of vapor-grown carbon fibers in straight form by floating catalyst method in Linz-Donawitz convertergas, Carbon, 31, 123-127 (1993).
[84] 成會明編, 張勁燕校訂, 奈米碳管, 五南圖書出版公司, p581 (2004).
[85] J. M. Ting and M. L. Lake, Vapor-grown carbon-fiber reinforced carbon composites, Carbon, 33, 663-667 (1995).
[86] M.Katsumata, M. Endo, H. Ushijima, and H. Yamanashi, Epoxy composites using vapor-grown carbon fiber fillers for advanced electroconductive adhesive agents, Journal of Materials Research, 9, 841-843 (1994).
[87] J. M. Ting, M. L. Lake, and D. R. Duffy, composites based on thermally hyper-conductive vapor grown carbon fiber, Journal of Materials Research, 10, 1478-1484 (1995).
[88] 邱文鼎, 新穎氧化鋅奈米線生長技術, 國立成功大學材料科學與工程學系碩士論文, 2003.
[89] S. R. Mukai, T. Masuda, T. Harada and K. Hashimoto, Dominant hydrocarbon which contributes to the growth of vapor grown carbon fibers, Carbon, 34, 645-648 (1996).
[90] D. C. Lee, F. V. Mikulec, and B. A. Korgel, Carbon nanotubes synthesis in supercritical toluene, J. Am. Chem. Soc., 126, 4951-4957 (2004).
[91] http://nr.stic.gov.tw/plant/html/plantDetail.CFM?plant_NO=254
[92] A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, and M. J. Heben, A Simple and complete purification of single-walled carbon nanotube materials, Advanced materials, 11, 1354-1358 (1999).
[93] J. F. Colomer, P. Piedigrosso, A. Fonseca, and J. B. Nagy, Different purification methods of carbon nanotubes produced by catalytic synthesis, Synthetic metals, 103, 2482-2483 (1999).
[94] X. H. Chen, C. S. Chen, Q. Chen, F. Q. Cheng, G. Zhang, and Z. Z. Chen, Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD, Materials letters, 57, 732-738 (2002).