簡易檢索 / 詳目顯示

研究生: 陳怡君
Chen, I-chun
論文名稱: 以不同海膽狀碳材製備鉑-釕觸媒用於電催化甲醇氧化反應
Pt-Ru Catalysts Supported by Various Types of Urchin-like Carbons for Methanol Electro-oxidation
指導教授: 翁鴻山
Weng, Hung-shan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 131
中文關鍵詞: 電極觸媒海膽狀碳材奈米碳管直接甲醇燃料電池
外文關鍵詞: Anode catalyst, Carbon nanotubes, Direct methanol fuel cell, Urchin-like carbon
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以改良直接甲醇燃料電池(DMFC)電極觸媒為主要的課題。首先在碳黑(CB)與中孔碳(MC)上沉積鎳,然後以甲烷或乙炔為碳源在其上生長奈米碳管製成ULCB與ULMC兩種海膽狀碳材,接著以這兩種海膽狀碳材為擔體製備成Pt1Ru1/C觸媒。研究中探討碳擔體種類、硝酸鎳含浸濃度、碳奈米管生長溫度及時間等因素,對碳基材上奈米碳管生長的關係,以及製成觸媒電極後用於甲醇氧化的電催化活性的影響。
    結果顯示:成長環境會影響奈米碳管的型態,其中硝酸鎳濃度和生長溫度會左右碳管的數目和管徑,藉生長時間可控制奈米碳管的長度。以這兩種海膽狀碳材為擔体製備的Pt-Ru觸媒,都比原本碳材為擔体製備者有較高的電催化活性。碳黑和中孔碳上生長的奈米碳管不僅扮演連接碳粒間的角色,且因它有高導電度可提高燃料電池的效能。此外也發現,在相同的Pt與Ru含量(20 wt % Pt-Ru)條件下,以海膽狀碳黑(ULCB)所製成的觸媒,用於電催化甲醇氧化反應比商用E-TEK觸媒有更好的效能。

    The main objective of this study is to improve the performance of the anode catalyst in direct methanol fuel cell. Carbon black (CB) and mesoporous carbon (MC) were employed as the substrates to prepare two kinds of urchin-like carbons, with methane or acetylene as the carbon source and nickel as the catalyst for growing carbon nanotubes (CNTs). The influencing factors, including the kind of substrates, impregnation concentration of Ni(NO3)2, temperature and time for carbon nanotube growth, on the amount, length and diameter of the CNTs were explored. The urchin-like carbons, ULCB and ULMC, were then used as the supports to prepare PtRu/ULCB and PtRu/ULMC electrocatalysts for methanol oxidation.
    Experimental results reveal that the concentration of nickel nitrate affects the amount and diameter of CNTs, and the growth time can control the length of CNTs. The electrocatalytic activities of the Pt-Ru catalysts with these two urchin-like carbons as the supports for the electrooxidation of methanol are higher than those with CB and MC as the supports. CNTs in the urchin-like carbons play the role of connecting the carbon particles and can enhance the performance of the electrode in DMFC because of their high electrical conductivity. In addition, the Pt-Ru catalyst we prepared has a higher electrocatalytic activity for methanol oxidation than the commercial E-TEK Pt-Ru catalyst with the same amounts of active metals(20 wt% Pt and Ru).

    摘要......................................................................................................... I Abstract.................................................................................................... II 目錄......................................................................................................... IV 圖目錄..................................................................................................... VI 表目錄..................................................................................................... XI 第一章 緒論............................................................................................ 1 1.1 前言................................................................................................... 1 1.2 研究動機........................................................................................... 4 第二章 基本原理與文獻回顧................................................................ 8 2.1直接甲醇燃料電池工作原理與構造................................................ 8 2.1.1 雙極板............................................................................................ 10 2.1.2 擴散層............................................................................................ 10 2.1.3 觸媒層............................................................................................ 11 2.1.4質子交換膜..................................................................................... 11 2.2 甲醇電催化機制............................................................................... 13 2.3 陽極觸媒材料................................................................................... 14 2.3.1陽極觸媒發展方向......................................................................... 15 2.4 陰極觸媒材料................................................................................... 16 2.5 碳材料簡介....................................................................................... 17 2.5.1 中孔碳............................................................................................ 17 2.5.2 奈碳米管........................................................................................ 21 2.5 觸媒製備方式................................................................................... 29 2.6電池極化現象與極化曲線................................................................ 31 2.7 線性掃描伏安法(Linear Sweep Voltammetry, LSV)......................... 33 第三章 實驗部分.................................................................................... 35 3.1 藥品與材料....................................................................................... 35 3.2 儀器設備........................................................................................... 37 3.3 實驗方法........................................................................................... 38 3.3.1 碳材之前處理................................................................................ 39 3.3.2 海膽狀碳材的製備........................................................................ 39 3.3.3 Pt1Ru1/C與Pt1Ru0.75Sn0.5/C觸媒(含Pt 10 wt﹪)之製備步驟..... 40 3.3.4 電極觸媒層之製備........................................................................ 40 3.4 觸媒特性分析................................................................................... 41 3.4.1 原子吸收光譜(AAS)分析.............................................................. 41 3.4.2 熱重量分析(TGA).......................................................................... 41 3.4.3 X光繞射(XRD)分析....................................................................... 41 3.4.4 比表面積測定(BET)....................................................................... 42 3.4.5 程溫還原(TPR)............................................................................... 42 3.4.6 掃瞄式電子顯微鏡(SEM)分析...................................................... 43 3.4.7 穿透式電子顯微鏡(TEM)分析...................................................... 43 3.4.8 TEM粒徑分佈之計算..................................................................... 43 3.4.9 拉曼光譜分析................................................................................. 44 3.5 電化學分析........................................................................................ 44 第四章 結果與討論................................................................................. 50 4.1 觸媒特性分析.................................................................................... 50 4.1.1吸附平衡曲線.................................................................................. 50 4.1.2 H2-TPR 圖譜................................................................................... 52 4.1.3 熱重損失分析................................................................................. 53 4.1.4 等溫物理吸附分析-表面積與孔徑分佈........................................ 58 4.1.5 拉曼(Raman)分析............................................................................ 63 4.1.6 XRD繞射分析................................................................................. 65 4.1.7能量散佈光譜儀分析...................................................................... 69 4.1.8 SEM分析......................................................................................... 70 4.1.9 TEM分析與粒徑分析..................................................................... 74 4.1.10 HR-TEM分析................................................................................. 89 4.2 觸媒電極之電化學活性測試............................................................ 94 4.2.1 以不同條件製備的海膽狀碳黑對電催化活性之影響................. 94 4.2.2 添加第三種電催化金屬對觸媒活性的影響................................. 97 4.2.3 海膽狀中孔碳對電催化活性之影響............................................. 97 4.3 觸媒電極之電池效能分析................................................................ 112 第五章 結論............................................................................................. 118 5.1結論..................................................................................................... 118 5.2 未來研究方向與對實驗的建議........................................................ 120 參考文獻.................................................................................................. 121 附錄.......................................................................................................... 128

    [1] International Energy Agency(IEA)(2006),World Energy Outlook2006, Paris.
    [2] 中華民國2007能源科技研究發展白皮書, 經濟部能源局.
    [3] 鄭耀宗、徐耀昇, “燃料電池技術進展的現況分析”, 節約能源論文發表會論文專輯, 409 (1999).
    [4] F. Rohmund, L. K. L. Falk, E. E.B. Campbell, “A simple method for the production of large arrays of aligned carbon nanotubes”, Chem. Phys. Lett., 328, 369 (20000).
    [5] http://www.yamaha-motor.co.jp/global/news/2005/09/28/tms-ev.html
    [6] J. Ding, K.Y. Chan, J. Ren, F.S. Xiao, “Platinum and platinum - ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions”, Electrochim. Acta, 50, 3131 (2005).
    [7] 李振彬, “直接甲醇燃料電池中陽極觸媒層效能之改良”, 國立成功大學化學工程學系碩士論文 (2005).
    [8] 紀景發, “以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能”, 國立成功大學化學工程學系碩士論文 (2006).
    [9] 張瓊瑤, “添加錫或鎢及碳奈米管於鉑-釕觸媒中以提昇直接甲醇燃料電池陽極之效能”, 國立成功大學化學工程學系碩士論文 (2007).
    [10] 辜珮瑜, “用於直接甲醇燃料電池中陽極之海膽狀PtRuSn觸媒的改良”, 國立成功大學化學工程學系碩士論文 (2008).
    [11] 黃鎮江, “燃料電池”, 金華科技圖書股份有限司 (2005).
    [12] N. Nakagawa, Y. Xiu, “Performance of a direct methanol fuel cell operated at atmospheric pressure”, J. Power Sources, 118, 248 (2003).
    [13] Z. Ogumi, T. Kuroe, Z.I. Takehara, “Gas permeation in SPE method”, J. Electrochem. Soc., 132, 2601 (1985).
    [14] T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surf. Sci., 335, 353 (1995).
    [15] W. J. Zhou, W. Z. Li, S.Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, “Bi- and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells”, J. Power Sources, 131, 217 (2004).
    [16] A. J. Dickinson, L. P. L. Carrette, J. A. Collins, K. A. Friedrich, U. Stimming, “Performance of methanol oxidation catalysts with varying Pt:Ru ratio as a function of temperature”, J. Appl. Electrochem., 34 , 975 (2004).
    [17] G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr., “Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors”, Appl. Phys. Lett., 73, 529 (1998).
    [18] M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, S. Uemura, “Synthesis and purification of multi-walled carbon nanotubes for field emitter applications”, Diamond Relat. Mater., 8, 785 (1999).
    [19] M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas”, Electrochim. Acta, 43, 3637 (1998).
    [20] C.M.Chuang, S.P. Sharma, J.M. Ting, H.P. Lin , H. Teng , C.W. Huang,“Preparation of sea urchin-like carbons by growing one-dimensional nanocarbon on mesoporous carbons”, Diamond Relat. Mater., 17, 606 (2008).
    [21] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, “Direct ethanol fuel cells based on PtSn anodes:the effect of Sn content on the fuel cell performance”, J. Power Sources, 140, 50 (2005).
    [22] J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs”, J. Electrochem. Soc., 150, A973 (2003).
    [23] C.W. Huang, C.M.Chuang, J.M. Ting, H.S. Teng, “Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes”, J. Power Sources, 183, 406 (2008).
    [24] W. H. Lizcano-Valbuena, D. C. de Azevedo, E. R. Gonzalez, “Supported metal nanoparticles as electrocatalysts for low-temperature fuel cells”, Electrochim. Acta , 49, 1289 (2004).
    [25] M. P. Hogarth and T. R. Ralph, “Catalysis for low temperature fuel cells.PART III: challenges for the direct methanol fuel cell”, Platinum Met. Rev., 46, 146 (2002).
    [26] Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami, “Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation”, Electrochim. Acta, 48, 3861 (2003).
    [27] L. X. Yang, R. G. Allen, K. Scott, P. Christenson, S. Roy, “A comparative study of PtRu and PtRuSn thermally formed on titanium mesh for methanol electro-oxidation”, J. Power Sources, 137, 257 (2004).
    [28] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, “Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol Electro-oxidation”, J. Phys. Chem. B, 102, 9997 (1998).
    [29] D. Chu, R.Jiang, “Novel electrocatalysts for direct methanol fuel cells”, Solid State Ionics, 148, 591(2002).
    [30] J. Larminie et al., Fuel Cell Systems Explained 2nd, Wiley (2003).
    [31] N. Zhao, Q. Cui, C.He, C.Shi, J. Li, H. Li, X. Du, “Synthesis of carbon nanostructures with different morphologies by CVD of methane”, Mater. Sci. Eng., A, 460–461, 255 (2007).
    [32] C. S. Lin, M. R. Khan, S. D. Lin, “The preparation of Pt nanoparticles by methanol and citrate”, J. Colloid Interface Sci., 299, 678 (2006).
    [33] J. Prabhuram, X. Wang, C. L. Hui, I. M. Hsing, “Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications”, J. Phys. Chem. B, 107, 11057 (2003).
    [34] Z. Liu, L. M. Gan, L. Hong, W. Chen, J. Y. Lee, “Carbon-supported Pt nanoparticles as catalysts for proton exchange membrane fuel cells”, J. Power Sources, 139, 73 (2005).
    [35] E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, “Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance”, J. Phys. Chem. B, 106, 760 (2002).
    [36] B. Hayden, D.V. Malevich, D. Pletcher, “Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions”, Electrochem. Commun., 3, 395 (2001).
    [37] H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang, Z. Ren, “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube(CNT) arrays for methanol oxidation”, Mater. Chem. Phys., 92, 548 (2005).
    [38] E. Terrado, M Redrado, E. Munoz, W.K. Maser,A,M. Benito, M.T.Martinez, “Aligned carbon nanotubes growm on alumina and quartz substrates by a simple thermal CVD process”, Diamond Relat. Mater., 15, 1059 (2006).
    [39] T.C. Deivaraj, Jim Yang Lee, “Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications – a comparative study”, J. Power Sources, 142, 43 (2005).
    [40] L. Jiang, G. Sun, S. Sun, J. Liu, S. Tang, H. Li, B. Zhou, Q. Xin, “Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation”, Electrochim. Acta, 50, 5384 (2005).
    [41] C.A. Bessel, K. Laubernds, N. M. Rodriguez, R. T. K. Baker, “Graphite nanofibers as an electrode for fuel cell applications”, J. Phys. Chem. B, 105, 6, 1115 (2001).
    [42] E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, C. M. Lukehart, “A Pt-Ru/Graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a Direct-Methanol fuel cell anode catalyst”, J. Phys. Chem. B, 105, 8097 (2001).
    [43] W. Li , C. Liang , J. Qiu , W. Zhou , H. Han ,Z Wei, G. Sun, Q. Xin, “Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell”, Carbon, 40,787 (2002).
    [44] K.I. Han, J.S. Lee, S.O. Park, S.W. Lee, Y.W. Park, H. Kim, “Studies on the anode catalysts of carbon nanotube for DMFC”, Electrochim. Acta, 50, 791 (2004).
    [45] T. Hyeon, S. Han, Y.E. Sung, K.W. Park, Y.W. Kim, “ High-Performance direct methanol fuel cell electrodes using Solid-Phase-Synthesized carbon nanocoils”, Angew. Chem. Int. Ed., 42, 4352 (2003).
    [46] IUPAC Mannal of Symbols and Terinoligy,Appendix 2,Pt.1, Collid and Surface Chemistry, Pure Appl.Chem., 31, 578 (1972).
    [47] J. Kang, J. Li, X. Du, C. Shi, N. Zhao, P. Nash, “Synthesis of carbon nanotubes and carbon onions by CVD using a Ni/Y catalyst supported on copper”, Mater. Sci. Eng., A, 475, 136 (2008).
    [48] M. Perez-Mendoza, C. Valles, W.K. Maser, M.T. Martnez, S. Langlois, J.L. Sauvajol, A.M. Benito, “Ni–Y/Mo catalyst for the large-scale CVD production of multi-wall carbon nanotubes”, Carbon, 43, 3002 (2005).
    [49] S. Zhan, Y. Tia , Y.Cui, H. Wu,Y. Wang, S. Ye, Y. Chen, “ Effect of process conditions on the synthesis of carbon nanotubes by catalytic decomposition of methane”, China Particuology, 5, 213 (2007).
    [50] Y. C. Choi, Y.M.Shin, Y. H. Lee, B. S. Lee, “Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition”, Appl. Phys. Lett., 76,17,2367(2000).
    [51] A.L.M. Reddy, M.M. Shaijumon S. Ramaprabhu, “Alloy hydride catalyst route of synthesis of single walled carbon nanotubes, multiwalled carbon nanotubes and magnetic metal nanowire encapsulated multi walled carbon nanotubes”, Nanotechnology 17, 5299 (2006).
    [52] J. H. Knox, B. Kaur, G. R. Millward, “Structure and performance of porous graphitic carbon in liquid chromatography”, J. Chromatogr. A, 352, 3 (1986).
    [53] L.A. Solovyov , A.N. Shmakov , V.I. Zaikovskii , S.H. Joo , R. Ryoo, “Detailed structure of the hexagonally packed mesostructured carbon material CMK-3”, Carbon, 40, 2477 (2002).
    [54] R. Ryoo, S. H. Joo, S. Jun, “Synthesis of highly ordered carbon molecular sieves via Template-Mediated structural
    transformation”, J. Phys. Chem. B, 103, 7743-7746 (1999).
    [55] R. Ryoo, S. H. Joo, M. Kruk,M. Jaroniec, “Ordered mesoporous carbons”, Adv. Mater., 13, 677 (2001).
    [56] H. Li, C.Shi, X.Du, C. He, J. Li, N. Zhao, “The influences of synthesis temperature and Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition”, Mater. Lett.,62, 1472 (2008).
    [57] J.H. Nam, Y.Y. Jang, Y.U. Kwon, J. D. Nam, “Direct methanol fuel cell Pt–carbon catalysts by using SBA-15 nanoporous templates”, Electrochem. Commun., 6, 737 (2004).
    [58] P. Kim, H. Kim, J. B. Joo, W. Kim, I. K. Song, J. Yi, “Preparation and application of nanoporous carbon templated by silica particle for use as a catalyst support for direct methanol fuel cell”, J. Power Sources, 145, 139 (2005).
    [59] G.G. Park, T.H. Yang, Y.G. Yoon, W.Y. Lee, C.S. Kim, “Pore size effect of the DMFC catalyst supported on porous materials”, Int. J. Hydrogen Energy, 28, 645 (2003).
    [60] S. Brunauer, L. S. Deming, W. E. Deming, E. Teller, “On a theory of the van der waals adsorption of gases”, J. Am. Chem. Soc., 62, 1723 (1940).
    [61] G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of Heterogeneous Catalysis”, 3, 1508 (1997).
    [62] 林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, “燃料電池-新世紀能源”, 滄海書局 (2004初版).
    [63] S.Iijima, “Helical microtubles of graphitic carbon”, Nature, 354,56 (1991).
    [64] T. W. Odaom, J. L. Huang, P. Kim. C. M. Lieber,“ Structure and electronic properties of carbon nanotubes”, J. Phys. Chem. B, 104, 2794 (2000).
    [65] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版公司 (2004).
    [66] C.Jounrnet, P. Bernier, “Production of carbon nanotubes”, Appl. Phys. , A 67, 1 (1998).
    [67] J. W. Snoeck, G. F. Froment, M. Fowles, “Filamentous carbon formation and gasification : Thermodynamics, driving force, nucleation, and steady-state growth”, J. Catal., 169, 240 (1997).
    [68] J. Cheng, X. Zhang, Z. Luo, F. Liu, Y. Ye, W. Yin, W. Liu, Y. Han, “Carbon nanotube synthesis and parametric study using CaCO3 nanocrystals as catalyst support by CVD”, Mater. Chem. Phys., 95, 5 (2006).
    [69] X. Zhang, K.Y. Chan , “Water-in-Oil microemulsion synthesis of Platinum-Ruthenium nanoparticles, their characterization and electrocatalytic properties”, Chem. Mater., 15, 451 (2003).
    [70] C.T. Hseih, W.L. Huang, J.T.Lue, “The change from paramagnetic resonance to ferromagnetic resonance for iron nanoparticles made by the sol-gel method”, J. Phys. Chem. Solids, 63, 733 (2002).
    [71] Y.H. Chung, S. Jou, “Carbon nanotubes from catalytic pyrolysis of polypropylene”, Mater. Chem. Phys., 92, 256 (2005).
    [72] Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, “Electrodeposition of Pt-Ru nanoparticles on catrbon nanotubes and their electrocatalytic properties for methanol electrooxidation”, Diamond Relat. Mater., 13, 1764 (2004).
    [73] Y. W. Rho, S. Srinivasan, “Mass transport phenomena in proton exchange membrane fuel cells using O2/He,O2/Ar and O2/N2 mixture Ⅱ theoretical analysis”, J. Electrochem. Soc., 141, 2089 (1994).
    [74] A. Tanaka, S.H. Yoon, I.Mochida, “Preparation of highly crystalline nanofibers on Fe and Fe–Ni catalysts with a variety of graphene plane alignments”, Carbon, 42, 591 (2004).
    [75] M. S. Dresselhaus, G. Dresselhaus, K, Sugihara, I. L. Spain, H. A. Goldberg, “Graphite fibers and filaments”, chapter 2.
    [76] B. C. Statishkumar,A.Govindaraj, C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene- hydrocarbon mixtures: role of the metal nanoparticles produces in situ”, Chem. Phys. Lett., 307, 158 (1999).
    [77] V. Ivanov, J.B.Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, D. Bernaert, G Van Tendeloo, S. Amelinckx, and J. van Landuyt, “The study of carbon nanotubes Produce by catalytic method”, Chem. Phys. Lett., 223, 329 (1994).
    [78] S.P. Sharma, S.C. Lakkad, “Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique”, Surf. Coat. Technol., 203, 1329 (2009).
    [79] G.P. Veronese, R. Rizzoli, R. Angelucci, M. Cuffiani,L. Malferrari, A. Montanari, F. Odorici, “Effects of Ni catalyst–substrate interaction on carbon nanotubes growth by CVD”, Physica E, 37, 21 (2007).
    [80]O. M. Kuttel, O.Groening, C. Emmenegger, L. Schlapbach, “Electron field emission from phase pure nanotubes films grown in a methane/hydrogen plasma”, Appl. Phys. Lett., 73, 2113 (1998).
    [81] H.Ogihara, S. Takenaka, I.Yamanaka, E.Tanabe, A.Genseki, J. Koki, K. Otsuka, “Three-Dimensional Analysis of Carbon Nanofibers by Cross-sectional TEM Observations”, Chem. Lett. ,37, 868 (2008).
    [82] N. Zhao, C. He, Z. Jiang, J. Li, Y. Li, “Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition”, Mater. Lett., 60, 159 (2006).
    [83] M. Endo, K. Takeachi, S. Igrashi, K. Kobori, M. Shiraishi, H.W. Kroto, “The production and structure of pyroltic carbon nanotubes(PCNTs)”, J. Phys. Chem. Solids, 54, 1841 (1993).
    [84] Z. G. Cambaz, G.Yushin, S.Osswald, V. Mochalin, Y. Gogotsi, “Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC”, Cabon, 46, 841 (2008).

    下載圖示 校內:2012-06-29公開
    校外:2012-06-29公開
    QR CODE