簡易檢索 / 詳目顯示

研究生: 伍湘杰
Wu, Shiang-Jie
論文名稱: 渦流溢放過程低頻調變與三維性之瞬時特性
INSTANTANEOUS PROPERTIES OF LOW-FREQUENCY MODULATIONS AND THREE-DIMENSIONALITY ASSOCIATED WITH VORTEX SHEDDING
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 131
中文關鍵詞: 渦流溢放低頻三維性
外文關鍵詞: vortex shedding, low frequency, three-dimensionality
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實驗方式探討渦流溢放過程低頻調變現象與三維性之瞬時特性,包括渦流溢放信號之振幅變化(Aw(t))、渦流溢放頻率變化(fw(t))、渦流溢放相位變化(q(t))。實驗雷諾數範圍為1.8×103至2.7×104,以一平板鈍形體為實驗模型,使用煙線視流法觀察渦流溢放之流向與側向結構,並以熱線測速儀量測近尾流區之渦流溢放信號,再以小波分析法求得此信號之瞬時特性。
    實驗結果顯示,渦流溢放信號低頻變化為近尾流流場之整體性的變化,Aw(t)與渦流形成長度具有明顯的相關性,而Aw(t)與fw(t)之相關性係數可達-0.7。在流場三維性方面,使用三根熱線同時量得側向間距分別為1倍與2倍特徵長度之信號,可得到相位變化差Dq(t),Dq(t)之最大值約為35°。Aw(t)與|Dq(t)|表現出明顯的負相關性,其相關性係數約為-0.4。此外Aw(t)之無因次化積分時間尺度(It)約為2,與Dq(t)之It 值1.86相當接近,且此積分時間尺度在實驗條件下顯示與雷諾數無關。
    在同一雷諾數條件下,根據渦流形成長度的不同,以兩倍的特徵長度為分界,本論文提出鈍形體渦流溢放可區分為兩種模式,長渦流形成區模式(mode L)與短渦流形成區模式(mode S)。在mode L,fw(t)較小,Aw(t)較大,Dq(t)較小,表現出較不明顯的三維性;在mode S,fw(t)較大,Aw(t)較小,Dq(t)之值大於20°,此外mode S發生的機率小於5%,為鈍形體渦流溢放過程之猝發(burst)特徵。

    The characteristic behaviors of low-frequency modulations embedded in the vortex shedding process were studied experimentally with a normal plate situated in a low-speed wind tunnel at Re = 1.8×103 to 2.7×104. Hot-wire signals and smoke-wire visualization images were acquired simultaneously to examine the correlation between low-frequency modulations and the vortex formation length. Wavelet analysis was performed to extract the instantaneous properties from the raw hot-wire signals measured in the region upstream of the normal plate model. Results show that the variations of instantaneous vortex shedding frequency appear to be correlated in a negative manner with the low-frequency modulations, that the cross-correlation coefficient can reach –0.7 in value. This substantiates that the low-frequency modulations observed are linked with the vortex shedding process.
    Further experiments using three hot-wires situated at different spanwise locations at the edge of separated shear layer were performed to investigate the three-dimensionality of the vortex shedding. Meanwhile, the three-dimensionality was evident by the streamwise vortices and the spanwise incoherence in the separated shear layer as visualized using the smoke-wire technique. It is noted that the phase difference of vortex shedding between the two signals with spanwise separation of two characteristic length may reach as high as 35°, at which the amplitude of vortex shedding sensed by either of the hot-wires appeared to be minimal. More specifically, the correlation coefficient of the spanwise phase differences of vortex shedding and the amplitude of vortex shedding reduced from the hot-wire signals measured amounts to –0.4, signifying that the linkage between the low-frequency modulations and three-dimensionality is noticeable. As a result, it is suggested that the low-frequency unsteadiness and the three-dimensionality of vortex shedding are can be described into two modes; namely, the long formation region mode, called mode L, and the short formation region mode, called mode S. In mode S, the instantaneous vortex shedding frequency appears to be higher, the instantaneous vortex shedding amplitude detected at a point outside the separated shear layer is weaker, and the three-dimensionality appears to be more pronounced. The mode S, corresponding to the events of vortex shedding with the spanwise phase difference larger than 20°, occupies less than 5% of the total time measured. In this study, the mode S is referred as the burst mode in vortex shedding.

    ABSTRACT ……………………………………………………………………… i CONTENTS ……………………………………………………………………… iii LIST OF TABLES ……………………………………………………………… vi LIST OF FIGURES …………………………………………………………… vii NOMENCLATURE ……………………………………………………………… xii I INTRODUCTION .......................................................... 1 1.1 Historical Perspective ........................................... 1 1.1.1 Low-Frequency Modulations Imbedded In The Vortex Shedding Process …. 1 1.1.2 Three-Dimensionality and Its Relation with Low-Frequency Modulation …. 3 1.1.3 Instantaneous Vortex Shedding Frequency and Low-Frequency Modulation. 8 1.2 Motivation and Present Problem ................................... 9 1.3 Thesis Outline .................................................. 11 II EXPERIMENTAL FACILITIES AND METHODS .................................. 13 2.1 Wind Tunnel .................................................. 13 2.2 Bluff Body Model ................................................. 13 2.3 Coordinate System ................................................ 14 2.4 Hot-Wire Anemometers ............................................. 14 2.5 Pressure Measurements ............................................ 16 2.6 Smoke-Wire Visualization Method .................................. 16 2.7 Data Acquisition System .......................................... 17 III DATA REDUCTION TECHNIQUE ............................................ 18 3.1 Wavelet Analysis ................................................. 18 3.2 Instantaneous Properties of the Present Flow ..................... 20 IV INSTANTANEOUS FLOW BEHAVIORS OBTAINED IN A STREAMWISE SECTIONAL PLANE ... 23 4.1 General Discussion on Hot-Wire Signals............................ 23 4.2 Flow Visualizations Results ...................................... 25 4.3 Cross-Correlation Analysis of Low-Frequency Modulation and Instantaneous Frequency ................................................................ 27 4.4 Characteristics of Low-Frequency Modulation ...................... 29 4.5 The Integral Time Scale of Low-Frequency Modulation .............. 33 4.6 Summary........................................................... 34 V INSTANTANEOUS FLOW BEHAVIORS REVEALED BY SPANWISE CORRELATIONS ........ 37 5.1 Smoke-Wire Visualization Results ................................. 37 5.2 Results of Hot-Wire Measurements at Different Spanwise Locations ..... 42 5.2.1 Cross-Correlation Analysis and Reynolds Number Effects on Raw Signals .. 43 5.2.2 Correlation Analysis of Low-Frequency Modulation and Instantaneous Vortex Shedding Frequency ........................................................ 44 5.2.3 Phase Difference along the Span ..................................... 47 5.2.4 Cross-Correlation between Low-Frequency Modulation and Variations of Spanwise Phase Difference.................................................. 51 5.3 Physical Picture of Vortex Shedding ............................... 55 5.4 Bursts of Pronounced Structures ................................... 59 VI CONCLUSIONS AND RECOMMENDATIONS ....................................... 63 6.1 Conclusions........................................................ 63 6.2 Recommendations.................................................... 65 REFERENCES................................................................. 67 APPENDIX Supplement on Extraction of Instantaneous Frequency.............. 75 TABLES .................................................................... 77 FIGURES ................................................................... 83 PUBLICATION LIST ......................................................... 130 VITA ......................................................................131

    Balachandar, S. & Najjar, F. M. 2001 Optimal two-dimensional models for wake flows. Phys. Fluids, vol. 13, pp. 157-176.
    Barkley, D. & Henderson, R. 1996 Three-dimensional floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech., vol. 322, pp. 215-241.
    Bays-Muchmore, B. & Ahmed, A. 1993 Three-dimensional shear layers via vortex dynamics. J. Fluid Mech., vol. 189, pp. 87-116.
    Bearman, P. W. 1997 Near wake flows behind two- and three-dimensional bluff bodies. J. Wind Eng. Ind. Aerodyn., vol. 69, pp. 33-54.
    Bearman, P. W. & Tombazis, N. 1993 The effects of three-dimensional imposed disturbances on bluff body near wake flows. J. Wind Eng. Ind. Aerodyn., vol. 49, pp. 339-350.
    Berger, E., Scholz, D. & Schumm, M. 1990 Coherent vortex structures in the wake of a sphere and a circular disk at rest and under force vibrations. J. Fluids Struct., vol. 4, pp. 231-257.
    Blackburn, H. M. & Melbourn, W. H. 1996 The effect of free-stream turbulence on sectional lift forces on a circular cylinder. J. Fluid Mech., vol. 306, pp. 267-292.
    Blevins, R. D. 1985 The effect of sound on vortex shedding from cylinders. J. Fluid Mech., vol. 161, pp. 217-237.
    Bloor, M. S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech., vol. 19, pp. 290-304.
    Braza, M., Faghani, D. & Persillon, H. 2001 Successive stages and the role of natural vortex dislocations in three-dimensional wake transition. J. Fluid Mech., vol. 439, pp. 1-41.
    Carmona, R. A., Hwang, W. L., & Torrésani, B. 1997 Characterization of signals by the ridges of their wavelet transform. IEEE Trans. Signal Process., vol. 45, pp. 2586-2590.
    Chyu, C. K. & Rockwell, D. 1996 Near-wake structure of an oscillating cylinder: effect of controlled shear-layer vortices. J. Fluid Mech., vol. 322, pp. 21-49.
    Cimbala, J. M., Nagib, H. M. & Roshko, A. 1988 Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech., vol. 190, pp. 265-298.
    Collis, D. & Williams, M. 1959 Two-dimensional convection from heated wires at low Reynolds numbers. J. Fluid Mech., vol. 6, pp. 357-389.
    Comte-Bellot, G. 1976 Hot-wire anemometry. Annu. Rev. Fluid Mech., vol. 8, pp. 209-231.
    Darekar, R. M. & Sherwin, S. J. 2001 Flow past a square-section cylinder with a wavy stagnation face. J. Fluid Mech., vol. 426, pp. 263-295.
    Dauchi, C., Dušek, J. & Fraunié, P. 1997 Primary and secondary instabilities in the wake of a cylinder with free ends. J. Fluid Mech., vol. 332, pp. 295-339.
    Farge, M. 1992 Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., vol. 24, pp. 395-457.
    Fox, T. A. & West, G. S. 1990 On the use of end plates with circular cylinders. Exp. Fluids, vol. 9, pp. 231-239.
    Gaster, M. 1969 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech., vol. 38, pp. 565-576.
    Gaster, M. 1971 Vortex shedding from circular cylinders at low Reynolds numbers. J. Fluid Mech., vol. 46, pp. 749-756.
    Gerich, D. & Eckelmann, H. 1982 Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech., vol. 122, pp. 109-121.
    Gerrard, J. H. 1966a The three-dimensional structure of the wake of a circular cylinder. J. Fluid Mech., vol. 25, pp. 143-164.
    Gerrard, J. H. 1966b The mechanics of the formation region of vortices behind bluff bodies. J. Fluid Mech., vol. 25, pp. 401-413.
    Gerrard, J. H. 1967 Experimental investigation of separated boundary layer undergoing transition to turbulence. Phys. Fluids, vol. 10, pp. 98-100.
    Gerrard, J. H. 1978 The wakes of cylinder bodies at low Reynolds number. Philos. Trans. R. Soc. Lond. A., vol. 288, pp. 351-382.
    Graham, J. M. R. 1969 The effect of end-plates on two-dimensionality of a vortex wake. Aeronaut. Q., vol. 20, pp. 237-247.
    Grant, H. L. 1958 The large eddies of turbulent motion. J. Fluid Mech., vol. 4, pp. 149-190.
    Grossman, A. & Morlet, J. 1984 Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., vol. 15, pp. 723-736.
    Hama, F. R. 1959 Three-dimensional vortex pattern behind a circular cylinder. J. Aeronaut. Sci., vol. 24, pp. 156-158.
    Hamdan, N. N., Jurban, B. A., Shabaneh, N. H. & Abu-Samak, M. 1996 Comparison of Various Basic Wavelets for the Analysis of Flow-Induced Vibration of a Cylinder in Cross Flow. J. Fluids Struct., vol. 10, pp. 633-651.
    Hamache, M. & Gharib, M. 1991 An experimental study on the parallel and oblique vortex shedding from circular cylinders. J. Fluid Mech., vol. 232, pp. 567-590.
    Hammond, J. K. & White, P. R. 1996 The analysis of non-stationary signals using time-frequency methods. J. Sound Vib., vol. 190(3), pp. 419-447.
    Hangan, H., Kopp, G. A., Vernet A., & Martinuzzi, R. 2001 A wavelet pattern recognition technique for identifying flow structures in cylinder generated wakes. J. Wind Eng. Ind. Aerodyn., vol. 89, pp. 1001-1015.
    Hanson, F. B. & Richardson, P. D. 1968 The near-wake of a circular cylinder in cross flow. J. Basic Eng., Trans. ASME., vol. 90, pp. 476-484.
    Henderson, R. C. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech., vol. 352, pp. 65-112.
    Higuchi, H., Kim, H. J. & Farell, C. 1989 On flow separation and reattachment around a circular cylinder at a critical Reynolds number. J. Fluid Mech., vol. 200, pp. 149-171.
    Higuchi, H., Lewalle, J. & Crane, P. 1994 On the structure of a two-dimensional wake behind a pair of flat plates. Phys. Fluids, vol. 6, pp. 297-305.
    Hsiao, F. B. & Chiang, C. H. 1998 Experimental study of cellular shedding vortices behind a tapered circular cylinder. Exp. Thermal Fluid Sci., vol. 17, pp. 179-188.
    Hu, C. C. 2000 Instantaneous vortex shedding behaviour in periodically varying flow. Ph. D. Thesis, National Cheng Kung University, Taiwan, R.O.C.
    Hu, C. C., Miau, J. J., & Chou, J. H. 2001 Instantaneous vortex shedding behaviour in periodically varying flow. Proc. R. Soc. Lond. A., vol. 458, pp. 911-932.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A., vol. 454, pp. 903-995.
    Huerre, P & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech., vol. 159, pp. 151-168.
    Humphreys, J. S. 1960 On a circular cylinder in a steady wind at transition Reynolds numbers. J. Fluid Mech., vol. 9, pp. 603-612.
    Ishikawa, H., Kiya, M., Komaki, Y. & Mochizuki, O. 1996 Low-frequency modulation of turbulent Karman vortex street. Trans. JSME B., vol. 62, pp. 2180-2186.
    Jubran, B. A., Hamdan, M. N., Shabanneh, N. H. & Szepessy, S. 1998 Wavelet and chaos analysis of irregularities of vortex shedding. Mech. Res. Commun., vol. 25, pp. 583-591.
    Kiya, M. & Abe, Y. 1999 Turbulent elliptic wakes. J. Fluids Struct., vol. 13, pp. 1041-1067.
    Kiya, M. & Matsumura, M. 1988 Incoherent turbulence structure in the near wake of a normal plate. J. Fluid Mech., vol. 190, pp. 343-356.
    Lewis, C. G. & Gharib, M. 1992 An exploration of the wake three dimensionalities caused by a local discontinuity in cylinder diameter. Phys. Fluids A., vol. 4, pp. 104-117.
    Lin, J. -C., Towfighi, J. & Rockwell, D. 1995 Instantaneous structure of the near-wake of a circular cylinder: on the effect of Reynolds number. J. Fluids Struct., vol. 9, pp. 409-418.
    Lisoski, D. 1993 Nominally 2-dimensional flow about a normal flat plate. Ph. D. Thesis, California Institute of Technology.
    Ma, X. & Karniadakis, G. 2002 A low-dimensional model for simulating three-dimensional cylinder flow. J. Fluid Mech., vol. 458, pp. 181-190.
    Mansy, H., Yang, P. -M. & Williams, D. R. 1994 Quantitative measurements of three- dimensional structures in the wake of a circular cylinder. J. Fluid Mech., vol. 270, pp. 277-296.
    Miau, J. J., Wang, J. T., Chou, J. H. & Wei, C. Y. 1999 Characteristics of low-frequency variations embedded in vortex shedding process. J. Fluids Struct., vol. 13, pp. 339-359.
    Miau, J. J., Wang, J. T., Chou, J. H. & Wei, C. Y. 2003 Low-Frequency fluctuations in the near wake region of a trapezoidal cylinder with low aspect ratio. Accepted by J. Fluids Struct.
    Miau, J. J., Yang, C. C., Chou, J. H. & Lee, K. R. 1993a Suppression of low-frequency variations in vortex shedding by a splitter plate behind a bluff body. J. Fluids Struct., vol. 7, pp. 897-912.
    Miau, J. J., Yang, C. C., Chou, J. H. & Lee, K. R. 1993b A T-shaped vortex shedder for a vortex flowmeter. Flow Meas. Instrum, vol. 4, pp. 259-267.
    Monkewitz, P. A., Williamson, C. H. K. & Miller, G. D. 1996 Phase dynamics of Kármán vortices in cylinder wakes. Phys. Fluids, vol. 8, pp. 91-96.
    Najjar, F. M. & Balachandar, S. 1998 Low- frequency unsteadiness in the wake of a normal flat plate. J. Fluid Mech., vol. 370, pp. 101-147.
    Noack, B. R., König, M. & Eckelmann, H. 1993 Three-dimensional stability analysis of the periodic flow around a circular cylinder. Phys. Fluids A., vol. 5, pp. 1279-1281.
    Norberg, C. 1989 An experimental study of the circular cylinder in cross flow: transition around Re = 5 ×103, 4th Asian Cong. Fluid Mech., Hong Kong, pp. C240-243.
    Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech., vol. 258, pp. 287-316.
    Norberg, C. 2003 Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct., vol. 17, pp. 57-96.
    Pier, B. 2002 On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J. Fluid Mech., vol. 458, pp. 407-417.
    Prasad, A. & Williamson, C. H. K. 1997 Three-dimensional effects in turbulent bluff-body wakes. J. Fluid Mech., vol. 343, pp. 235-265.
    Rockwell, D., Lin, J.-C., Cetiner, O., Downes, K. & Yang, Y. 2001 Quantitative imaging of the wake of a cylinder in a steady current and free-surface waves. J. Fluids Struct., vol. 15, pp. 427-443.
    Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Report 1191.
    Roshko, A. 1993 Perspectives on bluff body aerodynamics. J. Wind Eng. Ind. Aerodyn., vol. 49, pp. 79-100.
    Schewe, G. 1983 On the force fluctuations action on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech., vol. 133, pp. 265-285.
    Sohankar, A., Norberg, C. & Davidson, L. 1999 Simulation of unsteady three-dimensional flow around a square cylinder at moderate Reynolds numbers. Phys. Fluids, vol. 11, pp. 288-306.
    Stäger, R. & Eckelmann, H. 1991 The effect of endplates on the shedding frequency of a circular cylinders in the irregular range. Phys. Fluids A., vol. 3, pp. 2116-2121.
    Stansby, P. K. 1974 The effects of end plates on the base pressure coefficients of a circular cylinder. Aeronaut. J., vol. 78, pp. 36-37.
    Szepessy, S. 1994 On the spanwise correlation of vortex shedding from a circular cylinder at high subcritical Reynolds number. Phys. Fluids, vol. 6, pp. 2406-2416.
    Szepessy, S. & Bearman P. W. 1992, Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J. Fluid Mech., vol. 234, pp. 191-217.
    Taneda, S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106. J. Fluid Mech., vol.85, pp. 187-192.
    Thompson, M. C., Leweke, T. & Williamson, C. H. K. 2001 The physical mechanism of transition in bluff body wakes. J. Fluids Struct., vol. 15, pp. 607-616.
    Toebes, G. H. 1969 The unsteady flow and wake near an oscillating cylinder. ASME J. Basic Eng., vol. 91, pp. 493-505.
    Torrence, C. & Compo, G. P. 1998 A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc., vol. 79, pp. 61-78.
    Tritton, D. J. 1959 Experiments on the flow past a circular cylinder at low Reynolds number. J. Fluid Mech., vol. 16, pp. 547-567.
    Unal, M. F. & Rockwell, D. 1988 On vortex formation from a cylinder. Part 1. The initial instability. J. Fluid Mech., Vol. 190, pp. 491-512.
    Van Atta, C. W. & Gharib, M. 1987, Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech., vol. 174, pp. 113-133.
    Wang, C. T. 2000 Investigation of low frequency variations embedded in vortex shedding process. Ph. D. Thesis, National Cheng Kung University, Taiwan, R.O.C.
    Wei, T. & Smith, C. R. 1986 Secondary vortices in the wake of circular cylinder. J. Fluid Mech., vol. 169, pp. 513-553.
    Williamson, C. H. K. 1988 The existence of two stages in the transition to three dimensionality of a cylinder wake. Phys. Fluids, vol. 31, pp. 3165-3167.
    Williamson, C. H. K. 1989 Oblique and parallel mode of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech., vol. 206, pp. 579-591.
    Williamson, C. H. K. 1992 The natural and forced formation of spot-like vortex dislocations in the transition of a wake. J. Fluid Mech., vol. 243, pp. 393-441.
    Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech., vol. 28, pp. 477-539.
    Wu, J., Sheridan, J., Soria, J & Welsh, M. C. 1994 An experimental investigation of streamwise vortices in the wake of a bluff body. J. Fluids Struct., vol. 8, pp. 621-625.
    Yang, P. -M., Mansy, H. & Williams, D. R. 1993 Oblique and parallel wave interaction in the near wake of a circular cylinder. Phys. Fluids A., vol. 5, pp. 1657-1661.
    Yang, Y. & Rockwell, D. 2002 Wave interaction with a vertical cylinder: spanwise flow patterns and loading. J. Fluid Mech., vol. 460, pp. 93-129.
    Zdravkovich, M. M. 1996 Different modes of vortex shedding: an overview. J. Fluids Struct., vol. 10, pp. 427-437.
    Zdravkovich, M. M. 1996 Flow around circular cylinders, vol. 1, Oxford: Oxford University Press.

    下載圖示 校內:立即公開
    校外:2003-07-23公開
    QR CODE