簡易檢索 / 詳目顯示

研究生: 鐘亦農
Chung, Yi-Nong
論文名稱: 具毫米流道熱源與熱沉之奈米流體自然對流迴路熱傳遞實驗研究
Heat Transfer Experiment on a Natural Circulation Loop of Nanofluid with Minichannel Heatsink and Heatsource
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 毫米流道自然對流迴路奈米流體
外文關鍵詞: minichannel, natural circulation loop, nanofluid
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採實驗方式針對具毫米流道熱沉與熱源之矩形自然對流迴路,探討在等溫加熱及等溫冷卻條件下,以氧化鋁-水奈米流體取代純水之熱傳遞特性及效益。實驗迴路之熱沉與熱源段係以紅銅材質製作,分別具34 與23流道之毫米熱交換器,兩者之流道水力直徑均為0.96 mm 而絕熱段則採用內管徑為4 mm之壓克力圓管。本文所使用之氧化鋁-水奈米流體,其內含氧化鋁微粒之質量分率介於0 ~ 1.0 wt.%。熱傳實驗係透過加熱片及恆溫槽分別控制熱源與熱沉段之溫度設定,藉其間溫差形成浮力驅動迴路內自然對流輸送現象,測定迴路內毫米流道熱沉與熱源之進出口溫度與絕熱段溫度分佈,進而測定毫米流道熱沉與熱源之平均熱傳係數、熱阻與迴路之自然對流質流量。本研究之實驗結果顯示,利用氧化鋁-水奈米流體取代純水可有效地提升矩形自然對流迴路熱傳遞效率,最高可提升約20%的熱傳量;而在系統熱阻方面,添加1.0wt%的奈米流體,最多可降低約14.3%。另一方面,由於氧化鋁-水奈米流體黏滯係數相較於純水隨其質量分率呈現顯著上升趨勢,導致迴路內流動量或雷諾數亦隨之明顯下降。

    In this study, effectiveness of using alumina/water nanofluid to replace the pure water as the working fluid in a rectangular natural circulation loop with millimeter heatsink and heatsource has been investigated experimentally. The heatsink and heatsource sections of the circulation loop were fabricated using oxygen-free copper with 34 and 23 minichannels, respectively, which have identical hydraulic diameter of 0.96 mm. The adiabatic sections of the circulation loop were constructed by means of Acrylic circular tubes of 4mm in inner diameter. The alumina/water nanofluids used in the experiments contain various mass fraction of alumina nanoparticles between 0 ~ 1.0 wt.%. During the experiments, the heating and cooling sections of the loop were isothermally heated and cooled by means of a DC power supply and a constant-temperature bath, respectively. The experimental results clearly show that the heat transfer effectiveness can be significantly upgraded by using the alumina/water nanofluid to replace the pure water in the rectangular natural circulation loop with minichannel heat exchangers.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究動機與目的 4 1-4 論文架構 4 第二章 實驗方法與數據處理 8 2-1 實驗設備 8 2-1-1 實驗迴路 8 2-1-2 毫米流道 9 2-1-3 實驗迴路準備與維護 10 2-2 工作流體 19 2-3 工作流體熱物理性質 19 2-4 實驗方法 21 2-5 數據處理 22 2-6 不準度分析 28 第三章 結果與討論 30 3-1 加熱段的結果 31 3-1-1 加熱段平均紐賽數 31 3-1-2 加熱段平均熱傳增益 31 3-1-3 加熱段熱阻 32 3-2 冷卻段的結果 33 3-2-1 冷卻段平均紐賽數 33 3-2-2 冷卻段平均熱傳增益 34 3-2-3 冷壁熱阻 34 3-3 毫米熱交換流道對自然迴路熱傳量的影響 44 3-4 奈米顆粒的影響 45 3-4-1 奈米流體對雷諾數Re 的影響 45 3-4-2 奈米流體對系統迴路熱阻 Rsys 的影響 47 3-5 格拉雪夫數(Gr)對雷諾數(Re)的關係式 51 3-5-1 隨著工作流體的改變而變化 51 第四章 結論與未來方向 58 4-1 結論 58 4-2 未來方向 61 參考文獻 62 自述 65 附錄A 實驗數據 66

    A.K. Nayak, M.R. Gartia, P.K. Vijayan, (2008) "An Experimental Investigation of Single-Phase Natural Circulation Behavior in a Rectangular Loop with Al2O3 Nanofluids," Experimental Thermal and Fluid Science, vol. 33, pp. 184-189.
    B.T. Swapnalee , P.K. Vijayan,(2011) ”A Generalized Flow Equation for Single Phase Nature Circulation Loops Obeying Multiple Friction Laws,”, International Journal of Heat and Mass Transfer,vol.54, pp.2618-2629.
    C.J. Ho, S.P. Chiou, C.S. Hu, (1997) ”Heat Transfer Characteristics of a Rectangular Nature Circulation Loop Containing Water near its Density Extreme,” International Journal of Heat and Mass Transfer, vol. 40, pp. 3553-3558.
    C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, (2010) "Natural Convection Heat Transfer of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study," International Journal of Thermal Sciences, vol. 49, pp. 1345-1353.
    G.H. Tan, C.J. Ho, (2002) ”Experiment on Thermal Characteristics of a Natural Circulation Loop with Latent Heat Energy Storage under Cyclic Pulsed Heat Load, ” Heat Mass Transfer, vol. vol. 39, pp. 11-17.
    J. Li, D. Wang, G.P. Peterson, (2009) ”Development of a Robust Miniature Loop Heat Pipe for High Power Chip Cooling,”,Proceeding of the ASME 2009 2nd Micro/Nanoscale Heat & Mass Transfer International Conference.
    J.L. Xu, Y.H. Gan, (2004) "Oscillating Flow Behavior of a Natural Circulation Loop Using Minichannels at Atmospheric Pressure," Applied Thermal Engineering, vol. 24, pp. 2665-2677.
    J.F. Lin, S.Y. Chiu, C.J. Ho, (2008) ”Conjugate Heat Transfer Simulation of a Rectangular Nature Circulation Loop,” Heat Mass Transfer, vol. 45, pp. 167-175.
    M. Misale, P. Garibaldi, J.C. Passos, G. Ghisi de Bitencourt, (2007) "Experiments in a Single-Phase Natural Circulation Mini-Loop," Experimental Thermal and Fluid Sciences, vol. 31, pp. 1111-1120.
    M. Misale, P. Garibaldi, L. Tarozzi, G.S. Barozzi, (2011) "Influence of Thermal Boundary Conditions on the Dynamic Behaviour of a Rectangular Single-Phase Natural Circulation Loop," International Journal of Heat and Fluid Flow, vol. 32, pp. 413-423.
    P.K. Vijayan, M. Sharma, D.S. Pilkhwal, D. Saha, R.K. Sinha, (2010) "A Comparative Study of Single-Phase, Two-Phase, and Supercritical Natural Circulation in a Rectangular Loop," Journal of Engineering for Gas Turbines and Power, vol. 132, 102913.
    P.T. Garrity, J.F. Klausner, R. Mei, (2009) ”Instability Phenomena in a Two-Phase Microchannel Thermosyphon,” International Journal of Heat and Mass Transfer, vol. 52, pp. 1701-1708.
    P.S. Lee, S.V. Garimella, D. Liu, (2005) ”Investigation of Heat Transfer in Rectangular Microchannels,” International Journal of Heat and Mass Transfer, vol. 48, pp. 1688-1704.
    S.H. Noie, S. Zeinali Heris, M. Kahani, S.M. Nowee, (2009) ”Heat Transfer Enhancement using Al_2 O_3/Water Nanofluid in a Closed Thermosyphon,” International Journal of Heat Fluid Flow, vol. 30, pp. 700-705.
    T. Basaran, (2007) ”Laminar Flow Modelling of a Thermosyphon Loop at Specified Wall Temperature,” Heat Mass Transfer, vol. 43, pp. 1293-1302.
    T. Parametthanuwat, S. Rittidech, A. Pattiya, (2010) “A Correlation to Predict Heat-Transfer Rates of a Two-Phase Closed Thermosyphon (TPCT) Using Silver Nanofluid at Normal Operating Conditions,” International Journal of Heat and Mass Transfer, vol.53, pp. 4960-4965.
    W. Qu, I. Mudawar, (2002) ”Experimental and Numerical Study of Pressure Drop and Heat Transfer in Two-dimensional Minichannels,” International Journal of Heat and Mass Transfer, vol. 45, pp. 2549-2565.
    陳仁輝 (1998) ”內置PCM管矩形圓環迴路在週期性加熱條件下之熱傳特性研究” 國立成功大學機械工程研究所碩士論文.
    魏連晉 (2007) ”微流道熱沉孔奈米流體之強制對流熱傳實驗研究” 國立成功大學機械工程研究所碩士論文.
    鄭偉成 (2009) ”毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研究” 國立成功大學機械工程研究所碩士論文.

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE