| 研究生: |
劉家良 Liu, Chia-Liang |
|---|---|
| 論文名稱: |
晶圓扣環對於化學機械平坦化製程中接觸應力均勻度的影響 Effects of Retaining Ring on the Contact Stress Uniformity in Chemical Mechanical Planarization |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 化學機械平坦化 、晶圓扣環 、接觸應力均勻度 |
| 外文關鍵詞: | retaining ring, contact stress uniformity, chemical mechanical planarization |
| 相關次數: | 點閱:84 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在半導體製程中,化學機械平坦化製程扮演著使積體電路內部連接層高度平坦化的角色。在實際製程中,通常會用一剛性較強的晶圓扣環固定住晶圓,而晶圓扣環的存在可能影響晶圓與研磨墊間接觸應力之均勻度,進而影響材料移除率之均勻度。為了具體分析晶圓扣環對於接觸應力均勻度的影響,我們利用潤滑理論和接觸力學建立二維理論模型,以計算晶圓附加晶圓扣環情況下之接觸應力、研磨液壓力分佈,並且探討晶圓扣環的背壓與尺寸等參數,對於接觸應力均勻度、研磨墊與粗糙峰變形量、等效液膜厚度、研磨液壓力以及研磨液之體積流率的影響。結果發現附加晶圓扣環可使得晶圓邊緣部份的接觸應力下降,從而提高接觸應力之均勻度,但是卻會增加研磨液通過晶圓與晶圓扣環時的流阻,進而讓研磨液流率降低。根據參數研究結果,我們可以進一步找出可提升接觸應力均勻度的最佳化參數設定。
Chemical mechanical planarization (CMP) has played an enabling role in achieving near-perfect planarity of interconnection and metal layers in ultralarge scale integrated (ULSI) semiconductor devices. In practice, there is a retaining ring that keeps the wafer in place; its presence may affect the contact stress uniformity on the wafer-pad interface, which is an important factor determining the material removal rate (MRR) uniformity. To understand the effects of the presence of a retaining ring on the contact stress uniformity, here we use two-dimensional lubrication theory and contact mechanics model to calculate the contact stress and fluid pressure distributions on the wafer-pad interface, and then examine the effects of retaining ring back pressure and size on the contact stress uniformity. Our numerical results indicate that the presence of a retaining ring decreases the contact stress at the wafer edge, and hence improves the contact stress uniformity. However, it also increases the slurry flow resistance and therefore decreases the volumetric flow rate of the slurry. Through systematic parameter studies, we also deduce the optimal parameter settings that minimize the contact stress uniformity.
參考文獻
1. 菊地正典(陳連春譯) 透視半導體 建興出版社 台北 1&114~117 2004.
2.前田和夫(鄭政忠譯;2003) 半導體製造裝置 普林斯頓國際有限公司 台北 22-39.
3.Singh RK, Bajaj R (2002) “Advances in chemical-mechamical planarization”. MRS Bull 27:743-747.
4.Muldowney GP, Hendron JJ, and Crkvenac TT “The impact of slurry backmixing in determining optimal CMP process condition”. Rohm and Haas Electronic Materials CMP Technology, NewYork, DE 19713 USA.
5.Patrick WJ, Guthrie WL, Standley CL, Schiable PM (1991) “Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections”. J Electrochem Soc 138: 1778-1784.
6.土肥俊郎(王建榮編譯;2000) 半導體平坦化CMP技術 全華科技圖書館股份有限公司 台北.
7.http://semiconductor.firstlightera.com/EN/Microsites/1/JSR+micro/CMPSlurries.htm, JSR, Semiconductor Technology Library.
8.http://semiconductor.firstlightera.com/EN/Microsites/1/JSR+micro/CMPPads., JSR, Semiconductor Technology Library.
9.Preston FW (1927) “The theory and design of plate glass polishing machines”. J Soc Glass Technol 11, 214-256.
10.Tseng W-T, Wang Y-L (1997) “Re-examination of pressure and speed dependences of removal rate during chemical-mechanical polishing processes”. J Electrochem Soc 144:L15-L17.
11.Tseng W-T, Chin J-H,Lang L-C (1999) “A comparative study on the roles of velocity in the material removal rate during mechanical polishing”. J Electrochem Soc 146:1952-1959.
12.Kao Y-C, Yu C-C, Shen S-H (2003) “Robust operation of copper chemical mechanical polishing”. Microelectron Eng 65:61-75.
13.Zhang F, Busnaina A (1998) “The role of particle adhesion and surface deformation in chemical mechanical polishing processes”, Electrochem Solid-State Lett 1:184-187.
14.Homma Y, Fukushima K, Kondo S, Sakuma N (2003) “Effects of mechanical parameters on CMP characteristics analyzed by two-dimensional frictional force measurement”. J Electrochem Soc 150:G751-G757.
15.Homma Y (2006) “Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston’s empirical model”. J Electrochem Soc 153:G587-G590.
16.Steigerwald JM, Murarka SP, Gutmann RJ (1997) “Chemical mechanical planarization of microelectronic materials”, Wiley, New York.
17.J.Levert, R. Baker, F. Mess, R. Salant, S. Danyluk (1998) “Mechanisms of Chemical-Mechanical Polishing of SiO2 Dielectric on Intergrated Circuits”, Tribol. Trans., 41, NO. 4, 593-599.
18.J. Tichy, J. A. Levert, L. Shan, S. Danyluk (1999) “Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing”, J. Electrochem Soc., 146:1523-1528.
19.Fu G, Chandra A (2005) “The relationship between wafer surface pressure and wafer backside loading in chemical mechanical polishing”. Thin Solid Films 474:217-221.
20.Wang H-M, Moloney G, Stella M, DeGuzman S (2000) “Improvement of wafer edge profile anf CMP performance through the floating head design”. Mat Res Soc Symp 613:E5.1.1-E5.1.6.
21.Shiu S-J, Yu C-C, Shen S-H (2004) “Multivariable control of multizone chemical mechanical polishing”. J Vac Sci Technol B 22:1679-1687.
22.Doy TK, Seshimo K, Suzuki K, Philipossian A, Kinoshita M (2004) “Impact of novel pad groove designs on removal rate and uniformity of dielectric and copper CMP”. J Electrochem Soc 151:G196-G199.
23.Rosales-Yeomans D, Doi T, Kinoshita M, Suzuki T, Philipossian A (2005) “Effect of pad groove designs on the frictional and removal rate characteristics of ILD CMP”. J Electrochem Soc 152:G62-G67.
24.Subramanian RS, Zhang L, Babu SV (1999) “Transport phenomena in chemical mechanical polishing”. J Electrochem Soc 146:4263-4272.
25.Bakhtari K, Guldiken RO, Busnaina AA, Park J-G (2006) “Experimental and analytical study of submicrometer particle removal from deep trenches”. J Electrochem Soc 153:C603-C607.
26.Muldowney GP, Tselepidakis DP (2004) “A computational study of slurry flow in grooved CMP polishing pads”. In: Proceedings of the 2004 CMP-MIC Conference, Marina Del Ray, California, 24-26 February 2004, p022504.
27.Muldowney GP, James DB (2004) “Characterization of CMP pad surface texture and pad-wafer contact”. Mat Res Symp Proc 816:147-158.
28.T.S. Yang, Y.C. Wang (2007) “Effects of Pad Grooves on Chemical Mechanical Planarization”. J. Electrochem. Soc 154 (6) H486-H494
29.K. L. Johnson, Contact Mechanics, pp. 41, 104-106, Cambridge University Press, Canbridge, UK (1985).
30.B. J. Hamrock, S. R. Schmid, B. O. Jacobson (2004) Fundamentals of Fluid Film Lubrication. 2nd ed., Chapter 7, Marcel Dekker, Inc., New York.
31.J. C. Tannehill, D.A. Anderson, R. H. Pletcher (1997) Computational Fluid Mechanics and Heat Transfer, 2nd ed., Talor & Francis, Philadelphia, PA, Chapter 3.
32.王耀塵 楊天祥 陳國聲 顏嘉良, 多區段晶圓背壓對於化學機械研磨製程中材料移除率空間均勻度的影響, 第十四屆全國計算流體力學學術研討會.
33.王建鈞, 楊天祥, 化學機械研磨中研磨液流場計算與製程參數最佳化, 國立成功大學機械工程學系碩士論文.
34.Sum Huan Ng, Inho Yoon, C. Fred Higgs, III, Steven Danyluk (2004) “Wafer-Bending Measurements in CMP”. J. Electrochem. Soc 151 (12) G819-G823.
35.L. J. Borucki, S. H. Ng, S. Danyluk, (2005) J. Electrochem. Soc 152 G391.