簡易檢索 / 詳目顯示

研究生: 劉家昇
Liu, Jia-Sheng
論文名稱: 自旋霍爾與谷霍爾光子拓撲絕緣體的陳數計算
Calculation of Chern numbers in Spin Hall and Valley Hall Photonic Topological insulators by FDTD Method
指導教授: 張世慧
Chang, Shih-Hui
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 71
中文關鍵詞: 有限差分時域法光子晶體拓撲相陳數拓撲態
外文關鍵詞: FDTD, photonic crystal, topological phase, Chern number, topological state
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓撲相變和拓撲物質的研究自2016年獲得諾貝爾物理學獎後引起了固態物理學界的廣泛關注。這些研究的目標是探索物質能帶中的拓撲性質及其在物理現象中的應用,為我們揭示了拓撲在現代物理學中的重要地位。拓撲物質的研究廣泛應用於凝聚態物理學中,也在光子系統中有優異的表現。近年來,科學家們在拓撲的研究中取得了重要突破,並提出了一些令人驚訝的性質和應用,如邊緣態和自旋極化。光子系統因其能帶容易操控,在拓撲物質的研究中發揮著關鍵作用。而光子系統中的拓撲概念用於描述物體在連續變化中仍能保持其能帶之拓撲完整性的特性,並且成為一個不可或缺的自由度。本篇論文通過自旋霍爾與谷霍爾理論模型和有限時域差分法(FDTD)的數值模擬方法研究了介電質與表面電漿光子拓撲絕緣體的拓撲性質,並提出了有限離散倒空間晶格陳數FDTD計算方法來確定結構的拓撲特性。並探討了不同激發方式如hard/soft source及偽自旋相位與激發點相對位置,對不同拓撲絕緣體其陳數的影響。這些結果對於深入理解陳數於光子拓撲物質和拓撲相變的機制具有重要意義,並為拓撲光子態的應用提供了新的思路。這些研究可為未來量子計算、量子通信和光電器件等領域的應用提供了新的可能性。

    The research of topological phase transitions and topological phase of matter has drawn significant attention in the field of solid-state physics with the award of the 2016 Nobel Prize in Physics. The study of topological matter has found extensive applications in condensed matter physics and has shown remarkable performance in photonic systems. In recent years, scientists have made important breakthrough in topological research and discovered surprising properties and applications such as edge states and spin polarization. Photonic systems, known for their manipulability of band structures, play a critical role in the study of topological matter.
    This paper investigated the topological properties of dielectric and surface plasmon photonic topological insulators using the spin Hall and valley Hall theoretical models, along with the numerical simulation method of finite-difference time-domain (FDTD). It proposed a finite-discrete reciprocal lattice Chern number FDTD calculation method to determine the topological characteristics of the structures. The influence of different excitation methods such as hard/soft sources and pseudo-spin phases, as well as the relative positions of excitation points, on the Chern number of various topological insulators is explored. These findings hold significant importance for a deeper understanding of the mechanisms of Chern numbers in photonic topological matter and topological phase transitions, providing new insights for the application of topological photonic states. These studies open up new possibilities for future applications in fields such as quantum computing, quantum communication, and optoelectronic devices.

    中文摘要 I Abstract II 誌謝 XV 目錄 XVI 表目錄 XVIII 圖目錄 XIX 符號 XXII 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 1.3 本文內容 5 第二章 研究相關理論 6 2.1 光子拓撲絕緣體(Photonic Topological Insulators, PTI) 6 2.2 倒晶格空間(Reciprocal Lattice Space) 8 2.3 幾何相位(Geometric Phase) 11 2.4 貝里相位、連結和曲率(Berry Phase、Connection and Curvature ) 13 2.5 陳數的數值計算(Numerical Calculation of the Chern Number) 17 第三章 數值模擬方法 20 3.1 有限差分時域法(Finite Difference Time Domain , FDTD) 20 3.2 週期性邊界條件(Periodic Boundary Condition , PBC) 23 3.3 卷積完美匹配層(Convolution Perfectly Matched Layer , CPML) 26 3.4 杜魯德模型(Drude model) 29 3.5 離散倒空間中的貝里曲率(Berry Curvature in Discretized K Space) 31 第四章 研究結果與討論 34 4.1 介電質圓柱週期性結構 34 4.2 二維介電質光子晶體之基本性質 36 4.3 二維介電質光子晶體的陳數分析(spin Hall) 42 4.4 三維金屬薄膜的能帶與模態 51 4.5 金屬互補超穎表面之基本性質 55 4.6 金屬互補超穎表面結構的陳數分析(valley Hall) 58 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 67 參考文獻 68

    [1] L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nature Photon, vol. 8, no. 11, Art. no. 11, Nov. 2014, doi: 10.1038/nphoton.2014.248.
    [2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Den Nijs, “Quantized Hall Conductance in a Two-Dimensional Periodic Potential,” Phys. Rev. Lett., vol. 49, no. 6, pp. 405–408, Aug. 1982, doi: 10.1103/PhysRevLett.49.405.
    [3] R. V. Gamkrelidze, Topological Groups. London: Routledge, 2018. doi: 10.1201/9780203735558.
    [4] C. L. Kane and E. J. Mele, “Quantum Spin Hall Effect in Graphene,” Phys. Rev. Lett., vol. 95, no. 22, p. 226801, Nov. 2005, doi: 10.1103/PhysRevLett.95.226801.
    [5] P. Qiu et al., “Pseudospin Dependent One-Way Transmission in Graphene-Based Topological Plasmonic Crystals,” Nanoscale Res Lett, vol. 13, no. 1, p. 113, Apr. 2018, doi: 10.1186/s11671-018-2538-x.
    [6] J. Mei, Z. Chen, and Y. Wu, “Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals,” Sci Rep, vol. 6, no. 1, Art. no. 1, Sep. 2016, doi: 10.1038/srep32752.
    [7] Z.-G. Chen, J. Mei, X.-C. Sun, X. Zhang, J. Zhao, and Y. Wu, “Multiple topological phase transitions in a gyromagnetic photonic crystal,” Phys. Rev. A, vol. 95, no. 4, p. 043827, Apr. 2017, doi: 10.1103/PhysRevA.95.043827.
    [8] S. J. Palmer and V. Giannini, “Berry bands and pseudo-spin of topological photonic phases,” Phys. Rev. Research, vol. 3, no. 2, p. L022013, May 2021, doi: 10.1103/PhysRevResearch.3.L022013.
    [9] F. D. M. Haldane and S. Raghu, “Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,” Phys. Rev. Lett., vol. 100, no. 1, p. 013904, Jan. 2008, doi: 10.1103/PhysRevLett.100.013904.
    [10] A. Bouhon, A. M. Black-Schaffer, and R.-J. Slager, “Wilson loop approach to fragile topology of split elementary band representations and topological crystalline insulators with time-reversal symmetry,” Phys. Rev. B, vol. 100, no. 19, p. 195135, Nov. 2019, doi: 10.1103/PhysRevB.100.195135.
    [11] T. Fukui, Y. Hatsugai, and H. Suzuki, “Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances,” J. Phys. Soc. Jpn., vol. 74, no. 6, pp. 1674–1677, Jun. 2005, doi: 10.1143/JPSJ.74.1674.
    [12] T. Ozawa et al., “Topological photonics,” Rev. Mod. Phys., vol. 91, no. 1, p. 015006, Mar. 2019, doi: 10.1103/RevModPhys.91.015006.
    [13] K. Von Klitzing, “The quantized Hall effect,” Rev. Mod. Phys., vol. 58, no. 3, pp. 519–531, Jul. 1986, doi: 10.1103/RevModPhys.58.519.
    [14] F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the ‘Parity Anomaly,’” Phys. Rev. Lett., vol. 61, no. 18, pp. 2015–2018, Oct. 1988, doi: 10.1103/PhysRevLett.61.2015.
    [15] D. Griffiths, Introduction to Electrodynamics. 2017. doi: 10.1017/9781108333511.
    [16] E. H. Hall, “On a New Action of the Magnet on Electric Currents,” American Journal of Mathematics, vol. 2, no. 3, pp. 287–292, 1879, doi: 10.2307/2369245.
    [17] M. Z. Hasan and C. L. Kane, “Colloquium : Topological insulators,” Rev. Mod. Phys., vol. 82, no. 4, pp. 3045–3067, Nov. 2010, doi: 10.1103/RevModPhys.82.3045.
    [18] B. Simon, “Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase,” Phys. Rev. Lett., vol. 51, no. 24, pp. 2167–2170, Dec. 1983, doi: 10.1103/PhysRevLett.51.2167.
    [19] M. Nakahara, Geometry, Topology and Physics, Second Edition. CRC Press, 2003.
    [20] A. Bansil, H. Lin, and T. Das, “Colloquium: Topological band theory,” Rev. Mod. Phys., vol. 88, no. 2, p. 021004, Jun. 2016, doi: 10.1103/RevModPhys.88.021004.
    [21] I. A. Sukhoivanov and I. V. Guryev, Photonic Crystals: Physics and Practical Modeling, vol. 152. in Springer Series in Optical Sciences, vol. 152. Berlin, Heidelberg: Springer, 2009. doi: 10.1007/978-3-642-02646-1.
    [22] R. Ps, “Photonic Crystals - Molding the Flow of Light, by J.D. Joannopoulos, R.D. Meade, J.N. Winn,” Nature, vol. 381, no. 6580, pp. 290–290, 1996.
    [23] C. Kittel and P. McEuen, Introduction to Solid State Physics. John Wiley & Sons, 2018.
    [24] A. Shapere and F. Wilczek, Geometric Phases In Physics. World Scientific, 1989.
    [25] S. Pancharatnam, “Generalized theory of interference, and its applications,” Proceedings of the Indian Academy of Sciences - Section A, vol. 44, no. 5, pp. 247–262, Nov. 1956, doi: 10.1007/BF03046050.
    [26] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proc. Math. Phys. Eng. Sci., vol. 392, no. 1802, pp. 45–57, May 1984, doi: 10.1098/rspa.1984.0023.
    [27] S. A. Hassani Gangaraj, M. G. Silveirinha, and G. W. Hanson, “Berry Phase, Berry Connection, and Chern Number for a Continuum Bianisotropic Material From a Classical Electromagnetics Perspective,” IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 2, pp. 3–17, 2017, doi: 10.1109/JMMCT.2017.2654962.
    [28] A. B. Khanikaev, S. Hossein Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, “Photonic topological insulators,” Nature Mater, vol. 12, no. 3, Art. no. 3, Mar. 2013, doi: 10.1038/nmat3520.
    [29] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B, vol. 76, no. 4, p. 045302, Jul. 2007, doi: 10.1103/PhysRevB.76.045302.
    [30] A. Kitaev, “Periodic table for topological insulators and superconductors,” AIP Conference Proceedings, vol. 1134, no. 1, pp. 22–30, May 2009, doi: 10.1063/1.3149495.
    [31] T. Ma, A. B. Khanikaev, S. H. Mousavi, and G. Shvets, “Guiding Electromagnetic Waves around Sharp Corners: Topologically Protected Photonic Transport in Metawaveguides,” Phys. Rev. Lett., vol. 114, no. 12, p. 127401, Mar. 2015, doi: 10.1103/PhysRevLett.114.127401.
    [32] T. Ma and G. Shvets, “All-Si valley-Hall photonic topological insulator,” New J. Phys., vol. 18, no. 2, p. 025012, Feb. 2016, doi: 10.1088/1367-2630/18/2/025012.
    [33] X.-D. Chen, F.-L. Zhao, M. Chen, and J.-W. Dong, “Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation,” Phys. Rev. B, vol. 96, no. 2, p. 020202, Jul. 2017, doi: 10.1103/PhysRevB.96.020202.
    [34] M. Blanco de Paz et al., “Tutorial: Computing Topological Invariants in 2D Photonic Crystals,” Advanced Quantum Technologies, vol. 3, no. 2, p. 1900117, 2020, doi: 10.1002/qute.201900117.
    [35] C. Wang, H. Zhang, H. Yuan, J. Zhong, and C. Lu, “Universal numerical calculation method for the Berry curvature and Chern numbers of typical topological photonic crystals,” Front. Optoelectron., vol. 13, no. 1, pp. 73–88, Mar. 2020, doi: 10.1007/s12200-019-0963-9.
    [36] Y. Hatsugai, “Chern number and edge states in the integer quantum Hall effect,” Phys. Rev. Lett., vol. 71, no. 22, pp. 3697–3700, Nov. 1993, doi: 10.1103/PhysRevLett.71.3697.
    [37] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High Transmission through Sharp Bends in Photonic Crystal Waveguides,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3787–3790, Oct. 1996, doi: 10.1103/PhysRevLett.77.3787.
    [38] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302–307, May 1966, doi: 10.1109/TAP.1966.1138693.
    [39] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, Oct. 1994, doi: 10.1006/jcph.1994.1159.
    [40] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett., vol. 27, no. 5, pp. 334–339, Dec. 2000, doi: 10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A.
    [41] P. Drude, Lehrbuch der Optik. S. Hirzel, 1900.
    [42] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition., vol. 2062. 2005. doi: 10.1016/B978-012170960-0/50046-3.
    [43] S. Barik, H. Miyake, W. DeGottardi, E. Waks, and M. Hafezi, “Two-dimensionally confined topological edge states in photonic crystals,” New J. Phys., vol. 18, no. 11, p. 113013, Jan. 2016, doi: 10.1088/1367-2630/18/11/113013.
    [44] L.-H. Wu and X. Hu, “Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material,” Phys. Rev. Lett., vol. 114, no. 22, p. 223901, Jun. 2015, doi: 10.1103/PhysRevLett.114.223901.
    [45] C. A. Ballhausen and H. B. Gray, Molecular orbital theory: an introductory lecture note and reprint volume. New York, NY: W. A. Benjamin, Inc., 1965. Accessed: May 23, 2023. [Online]. Available: https://resolver.caltech.edu/CaltechBOOK:1965.002
    [46] D. J. Bisharat and D. F. Sievenpiper, “Electromagnetic‐Dual Metasurfaces for Topological States along a 1D Interface,” Laser & Photonics Reviews, vol. 13, no. 10, p. 1900126, Oct. 2019, doi: 10.1002/lpor.201900126.
    [47] M. Yamamoto, Y. Shimazaki, I. V. Borzenets, and S. Tarucha, “Valley Hall Effect in Two-Dimensional Hexagonal Lattices,” J. Phys. Soc. Jpn., vol. 84, no. 12, p. 121006, Dec. 2015, doi: 10.7566/JPSJ.84.121006.

    QR CODE