簡易檢索 / 詳目顯示

研究生: 宋宜穎
Sung, Yi-Ying
論文名稱: 利用二氧化矽殼層包覆金屬奈米粒子合成三維石墨烯
Synthesis of 3D Graphene Using Silica-Coated Metal Nanoparticle as a Reliable Growth Template
指導教授: 陳巧貞
Chen, Chiao-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 91
中文關鍵詞: 三維石墨烯
外文關鍵詞: 3D graphene foam
相關次數: 點閱:110下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於石墨烯獨特的物理化學性質而掀起一股研究風潮。根據研究顯示,具有三維孔洞狀的石墨烯泡棉相較於平面二維石墨烯薄膜在能量儲存設備的應用上展現較好的電性質。科學家們皆使用具有孔洞狀之骨架使碳沉積於骨架上來製備三維石墨烯泡棉。
    目前研究利用鍍鎳的方式製備出具有10 μm孔洞的鎳骨架,但嘗試縮小孔洞會產生骨架崩塌的現象,因為石墨烯需要在極高溫的環境下生長,高溫造成金屬揮發與合成出的石墨烯所產生的表面張力是導致骨架崩塌現象的兩個重要因素。
    為了得到一個具有可以調整孔洞大小的骨架作為合成石墨烯的骨架膜板,我們選擇銅奈米粒子取代鎳泡棉作為基板,如此將大幅提升所合成之三維石墨烯泡棉的表面積。並以二氧化矽殼層包覆銅奈米粒子來避免銅奈米粒子於高溫合成中產生形變。二氧化矽殼層不僅可以降低在生長石墨烯的高溫環境下所導致之金屬揮發現象,同時二氧化矽殼層的表面孔洞性更可提供碳源甲烷氣體一個通道,使碳源能抵達奈米銅表面進行催化以生成石墨烯。實驗中所合成的三維石墨烯在未來期望能去除不導電的二氧化矽殼層並製備成電極應用於能量儲存裝置上。

    Graphene has proven to be promising for diverse applications in various research fields due to its unique physicochemical properties. In particular, graphene foams with three-dimensional (3D) porous structure have been reported to show better properties than two-dimensional (2D) graphene films for the development of energy storage devices. In general, synthesis of 3D graphene foams requires a reliable template as the framework for carbon deposition. However, recent research shows that Ni foams with a pore size smaller than 10 μm fail to provide an effective template for 3D graphene synthesis. This is because that the porous structure of Ni foams tends to collapse due to the elevated temperature required for graphene growth and the large surface tension resulted from as-grown graphene grains on the Ni surface. To obtain a reliable framework for the synthesis of 3D graphene with desired porous dimensions, we attempt to use copper nanoparticles rather than Ni foams as the template. To prevent the deformation in the dimension of copper nanoparticles due to thermal evaporation during the graphene synthesis process, nanoparticles coated with thermo-resistive silica porous materials are applied as the catalytic metal template for graphene growth. The silica coating not only helps to reduce the metal evaporation at high temperature but also provides a pathway to allow the carbon precursors coming into contact with the catalytic surface of copper to initiate the formation of graphene. The synthesized graphene with 3D network will be further applied to fabricate electrodes for advanced applications in energy storage devices.

    中文摘要 I Extended Abstracts II 致謝 XIII 目錄 XIV 圖目錄 XVI 表目錄 XIX 第1章 緒論與動機 1 1.1 超級電容的簡介 1 1.1.1 電雙層電容(Electrochemical double layer capacitor) 1 1.1.2 擬電容(Pseudocapacitors) 2 1.1.3 混和超級電容(Hybrid capacitors) 3 1.2 研究動機 3 第2章 文獻回顧 4 2.1 石墨烯簡介 4 2.1.1 石墨烯基本性質 4 2.1.2 石墨烯物理特性 5 2.1.3 石墨稀的能帶結構 5 2.1.4 化學氣相沉積法石墨稀成長機制 6 2.2 三維石墨烯簡介 9 2.2.1 三維石墨烯特性 9 2.2.2 三維石墨烯製備方法 10 2.3 二氧化矽塗層 14 2.3.1 二氧化矽塗層特性 14 2.3.2 二氧化矽塗層原理 14 第3章 實驗方法與材料 17 3.1 實驗步驟流程 17 3.2 奈米銅合成 17 3.3 二氧化矽塗布於奈米銅 18 3.4 以化學氣相沉積法製備石墨烯 20 3.4.1 化學氣相沉積儀架構 20 3.4.2 參數 21 3.5 檢驗儀器 21 3.5.1 電子顯微鏡 21 3.5.2 顯微拉曼光譜儀 23 3.5.3 X射線光電子能譜學(X-ray photoelectron spectroscopy, XPS)24 3.5.4 歐傑電子能譜儀(Auger electron spectroscopy) 25 第4章 結果與討論 26 4.1 奈米銅合成 26 4.1.1 合成奈米銅之形貌鑑定 26 4.2 合成二氧化矽殼層 36 4.2.1 方法一 36 4.2.2 方法二 42 4.2.2.1 反相微乳液法 42 4.2.2.2 溶劑組成的影響 45 4.2.2.3 界面活性劑濃度的影響 47 4.2.2.4 鹼濃度的影響 49 4.2.3 加厚二氧化矽殼層 51 4.3 化學氣相沉積法合成石墨烯 53 4.3.1 合成石墨烯之參數 53 第5章 結論 66 第6章 附錄 67 第7章 參考資料 80

    1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306, 666.
    2. Munoz, R.; Gomez-Aleixandre, C., Review of CVD Synthesis of Graphene. Chem. Vap. Deposition 2013, 19, 297.
    3. Liu, J.; Xue, Y. H.; Zhang, M.; Dai, L. M., Graphene-based materials for energy applications. MRS Bull. 2012, 37, 1265.
    4. Sha, J. W.; Gao, C. T.; Lee, S. K.; Li, Y. L.; Zhao, N. Q.; Tour, J. M., Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates. ACS Nano 2016, 10, 1411.
    5. Jiang, W.; Xin, H.; Li, W., Microcellular 3D graphene foam via chemical vapor deposition of electroless plated nickel foam templates. Mater. Lett. 2016, 162, 105.
    6. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424.
    7. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. Nature 2006, 442, 282.
    8. Singh, E.; Chen, Z.; Houshmand, F.; Ren, W.; Peles, Y.; Cheng, H.-M.; Koratkar, N., Superhydrophobic Graphene Foams. Small 2013, 9, 75.
    9. Ning, J.; Xu, X.; Liu, C.; Fan, D. L., Three-dimensional multilevel porous thin graphite nanosuperstructures for Ni(OH)(2)-based energy storage devices. J. Mater. Chem. A 2014, 2, 15768.
    10. Yan, Z.; Yao, W.; Hu, L.; Liu, D.; Wang, C.; Lee, C. S., Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites. Nanoscale 2015, 7, 5563.
    11. Bi, H.; Cui, H.; Lin, T.; Huang, F., Graphene wrapped copper-nickel nanospheres on highly conductive graphene film for use as counter electrodes of dye-sensitized solar cells. Carbon 2015, 91, 153.
    12. Mie, G., Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions. Ann. Phys 1908, 25.
    13. Mine, E.; Konno, M., Secondary particle generation at low monomer concentrations in seeded growth reaction of tetraethyl orthosilicate. J. Chem. Eng. Jpn. 2001, 34, 545.
    14. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797.
    15. Linzen, D.; Buller, S.; Karden, E.; De Doncker, R. W., Analysis and evaluation of charge-balancing circuits on performance, reliability, and lifetime of supercapacitor systems. IEEE Trans. Ind. Appl. 2005, 41, 1135.
    16. Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P.; Gohy, J.-F., Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. rep. 2014, 4, 4315.
    17. Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F., Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632.
    18. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520.
    19. Dyatkin, B.; Presser, V.; Heon, M.; Lukatskaya, M. R.; Beidaghi, M.; Gogotsi, Y., Development of a green supercapacitor composed entirely of environmentally friendly materials. Chem. Sus. Chem. 2013, 6, 2269.
    20. Wang, Q.; Wen, Z.; Li, J., A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2–B nanowire anode. Adv. Func. Mater. 2006, 16, 2141.
    21. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B., Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012, 335, 1326.
    22. Helmholtz, H. v., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch‐elektrischen Versuche. Ann. Phys. 1853, 165, 211.
    23. Grahame, D. C., The electrical double layer and the theory of electrocapillarity. Chem. Rev. 1947, 41, 441.
    24. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
    25. Huang, M.; Zhang, Y.; Li, F.; Wang, Z.; Hu, N.; Wen, Z.; Liu, Q., Merging of Kirkendall growth and Ostwald ripening: CuO@ MnO2 core-shell architectures for asymmetric supercapacitors. Sci. Rep. 2014, 4.
    26. Wu, M.-S.; Chiang, P.-C. J., Fabrication of nanostructured manganese oxide electrodes for electrochemical capacitors. Electrochem. Solid State Lett. 2004, 7, A123.
    27. Sugimoto, W.; Iwata, H.; Murakami, Y.; Takasu, Y., Electrochemical capacitor behavior of layered ruthenic acid hydrate. J. Electrochem. Soc. 2004, 151, A1181.
    28. Dong, X.; Shen, W.; Gu, J.; Xiong, L.; Zhu, Y.; Li, H.; Shi, J., MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B 2006, 110, 6015.
    29. Jurewicz, K.; Delpeux, S.; Bertagna, V.; Beguin, F.; Frackowiak, E., Supercapacitors from nanotubes/polypyrrole composites. Chem. Phy. Lett. 2001, 347, 36.
    30. Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L., Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34, 4889.
    31. Conway, B.; Birss, V.; Wojtowicz, J., The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 1997, 66, 1.
    32. Chuang, C.-M.; Huang, C.-W.; Teng, H.; Ting, J.-M., Effects of carbon nanotube grafting on the performance of electric double layer capacitors. Energy Fuels 2010, 24, 6476.
    33. Choi, H.; Yoon, H., Nanostructured electrode materials for electrochemical capacitor applications. Nanomaterials 2015, 5, 906.
    34. Terasawa, N.; Asaka, K., High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers. Langmuir 2014, 30, 14343.
    35. Lin, Y.; Wang, X.; Qian, G.; Watkins, J. J., Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors. Chem. Mater. 2014, 26, 2128.
    36. Long, C.; Qi, D.; Wei, T.; Yan, J.; Jiang, L.; Fan, Z., Nitrogen‐Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose. Adv. Funct. Mater. 2014, 24, 3953.
    37. Wang, F.; Zhan, X.; Cheng, Z.; Wang, Z.; Wang, Q.; Xu, K.; Safdar, M.; He, J., Tungsten oxide@ polypyrrole core–shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 2015, 11, 749.
    38. Li, L.; Zhang, Y.; Shi, F.; Zhang, Y.; Zhang, J.; Gu, C.; Wang, X.; Tu, J., Spinel manganese–nickel–cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications. ACS Appl. Mater. Interfaces 2014, 6, 18040.
    39. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507.
    40. Hill, E. W.; Vijayaragahvan, A.; Novoselov, K., Graphene Sensors. IEEE Sensors J. 2011, 11, 3161.
    41. Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2010, 22, 1027.
    42. Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H., Graphene-based composites. Chem Soc. Rev. 2012, 41, 666.
    43. Sun, Y. Q.; Wu, Q. O.; Shi, G. Q., Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113.
    44. Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M., Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. Acs Nano 2010, 4, 1321.
    45. Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J. H.; Cheng, H. M., Graphene-Cellulose Paper Flexible Supercapacitors. Adv. Energy Mater. 2011, 1, 917.
    46. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6, 183.
    47. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109.
    48. Bhaviripudi, S.; Jia, X.; Dresselhaus, M. S.; Kong, J., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano lett. 2010, 10, 4128.
    49. Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S., Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.
    50. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312.
    51. Li, X.; Cai, W.; Colombo, L.; Ruoff, R. S., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano lett. 2009, 9, 4268.
    52. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S., Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537.
    53. Zhou, Q.; Ye, X.; Wan, Z.; Jia, C., A three-dimensional flexible supercapacitor with enhanced performance based on lightweight, conductive graphene-cotton fabric electrode. J. Power Sources 2015, 296, 186.
    54. Walcarius, A., Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098.
    55. Zhu, C.; Du, D.; Eychmuller, A.; Lin, Y., Engineering Ordered and Nonordered Porous Noble Metal Nanostructures: Synthesis, Assembly, and Their Applications in Electrochemistry. Chem. Rev. 2015, 115, 8896.
    56. Yan, Z. Q.; Yao, W. L.; Hu, L.; Liu, D. D.; Wang, C. D.; Lee, C. S., Progress in the preparation and application of three-dimensional graphene-based porous nanocomposites. Nanoscale 2015, 7, 5563.
    57. Shi, Q. R.; Cha, Y.; Song, Y.; Lee, J. I.; Zhu, C. Z.; Li, X. Y.; Song, M. K.; Du, D.; Lin, Y. H., 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale 2016, 8, 15414.
    58. Shi, L. R.; Chen, K.; Du, R.; Bachmatiuk, A.; Rummeli, M. H.; Xie, K. W.; Huang, Y. Y.; Zhang, Y. F.; Liu, Z. F., Scalable Seashell-Based Chemical Vapor Deposition Growth of Three-Dimensional Graphene Foams for Oil-Water Separation. J. Am. Chem. Soc. 2016, 138, 6360.
    59. Dong, X. C.; Cao, Y. F.; Wang, J.; Chan-Park, M. B.; Wang, L. H.; Huang, W.; Chen, P., Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. Rsc Advances 2012, 2, 4364.
    60. Avdoshenko, S. M.; Gomes da Rocha, C.; Cuniberti, G., Nanoscale ear drum: graphene based nanoscale sensors. Nanoscale 2012, 4, 3168.
    61. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228.
    62. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558.
    63. Le, L. T.; Ervin, M. H.; Qiu, H. W.; Fuchs, B. E.; Lee, W. Y., Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 2011, 13, 355.
    64. Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q., Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2.
    65. Zhang, L.; Zhang, F.; Yang, X.; Long, G. K.; Wu, Y. P.; Zhang, T. F.; Leng, K.; Huang, Y.; Ma, Y. F.; Yu, A.; Chen, Y. S., Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 2013, 3.
    66. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M., Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater. 2009, 19, 2577.
    67. Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H. M., Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424.
    68. Kim, B. J.; Yang, G.; Park, M. J.; Kwak, J. S.; Baik, K. H.; Kim, D.; Kim, J., Three-dimensional graphene foam-based transparent conductive electrodes in GaN-based blue light-emitting diodes. Appl. Phys. Lett. 2013, 102, 161902.
    69. Gogotsi, Y.; Simon, P., True Performance Metrics in Electrochemical Energy Storage. Science 2011, 334, 917.
    70. Kim, K.; Lee, T.; Kwon, Y.; Seo, Y.; Song, J.; Park, J. K.; Lee, H.; Park, J. Y.; Ihee, H.; Cho, S. J.; Ryoo, R., Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template. Nature 2016, 535, 131.
    71. Ning, J.; Xu, X. B.; Liu, C.; Fan, D. L., Three-dimensional multilevel porous thin graphite nanosuperstructures for Ni(OH)(2)-based energy storage devices. J. Mater. Chem. A. 2014, 2, 15768.
    72. Sha, J.; Gao, C.; Lee, S. K.; Li, Y.; Zhao, N.; Tour, J. M., Preparation of Three-Dimensional Graphene Foams Using Powder Metallurgy Templates. ACS Nano 2016, 10, 1411.
    73. Lander, J. J.; Kern, H. E.; Beach, A. L., SOLUBILITY AND DIFFUSION COEFFICIENT OF CARBON IN NICKEL - REACTION RATES OF NICKEL-CARBON ALLOYS WITH BARIUM OXIDE. J. Appl. Phys. 1952, 23, 1305.
    74. Lopez, G. A.; Mittemeijer, E., The solubility of C in solid Cu. Scripta Mater. 2004, 51, 1.
    75. Drieschner, S.; Weber, M.; Wohlketzetter, J.; Vieten, J.; Makrygiannis, E.; Blaschke, B. M.; Morandi, V.; Colombo, L.; Bonaccorso, F.; Garrido, J. A., High surface area graphene foams by chemical vapor deposition. 2d Materials 2016, 3.
    76. Guo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D.-L., Facile synthesis of Cu and Cu@ Cu–Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 2013, 5, 2394.
    77. Yeh, M.-S.; Yang, Y.-S.; Lee, Y.-P.; Lee, H.-F.; Yeh, Y.-H.; Yeh, C.-S., Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol. J. Phys. Chem. B 1999, 103, 6851.
    78. Kumar, R. V.; Mastai, Y.; Diamant, Y.; Gedanken, A., Sonochemical synthesis of amorphous Cu and nanocrystalline Cu2O embedded in a polyaniline matrix. J. Mater. Chem. 2001, 11, 1209.
    79. de Oliveira, A. M.; Crizel, L. E.; da Silveira, R. S.; Pergher, S. B. C.; Baibich, I. M., NO decomposition on mordenite-supported Pd and Cu catalysts. Catal. Commun. 2007, 8, 1293.
    80. Huang, H.; Yan, F.; Kek, Y.; Chew, C.; Xu, G.; Ji, W.; Oh, P.; Tang, S., Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 1997, 13, 172.
    81. Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S., Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 2007, 311, 417.
    82. Wu, S.-H.; Chen, D.-H., Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J. Colloid Interface Sci. 2004, 273, 165.
    83. Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P., Synthesis of nanosized gold− silica core− shell particles. Langmuir 1996, 12, 4329.
    84. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P., Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir 1998, 14, 3740.
    85. Ung, T.; Liz-Marzán, L. M.; Mulvaney, P., Optical properties of thin films of Au@ SiO2 particles. J. Phys. Chem. B 2001, 105, 3441.
    86. Kobayashi, Y.; Correa-Duarte, M. A.; Liz-Marzán, L. M., Sol− gel processing of silica-coated gold nanoparticles. Langmuir 2001, 17, 6375.
    87. Doering, W. E.; Nie, S., Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 2003, 75, 6171.
    88. Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J., Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 2003, 19, 4784.
    89. Lal, S.; Clare, S. E.; Halas, N. J., Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 2008, 41, 1842.
    90. Radloff, C.; Halas, N., Enhanced thermal stability of silica-encapsulated metal nanoshells. Appl. Phys. Lett. 2001, 79, 674.
    91. Liu, S.; Zhang, Z.; Han, M., Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal. Chem. 2005, 77, 2595.
    92. Liu, S.; Han, M., Synthesis, functionalization, and bioconjugation of monodisperse, Silica‐Coated gold nanoparticles: Robust bioprobes. Adv. Funct. Mater. 2005, 15, 961.
    93. Mulvaney, P.; Giersig, M.; Ung, T.; Liz‐Marzán, L. M., Direct observation of chemical reactions in silica‐coated gold and silver nanoparticles. Adv. Mater. 1997, 9, 570.
    94. Liu, S.; Wong, Y.; Wang, Y.; Wang, D.; Han, M. Y., Controlled Release and Absorption Resonance of Fluorescent Silica‐Coated Platinum Nanoparticles. Adv. Funct. Mater. 2007, 17, 3147.
    95. Ge, J.; Zhang, Q.; Zhang, T.; Yin, Y., Core–satellite nanocomposite catalysts protected by a porous silica shell: controllable reactivity, high stability, and magnetic recyclability. Angew. Chem. 2008, 120, 9056.
    96. Zhang, T.; Ge, J.; Hu, Y.; Zhang, Q.; Aloni, S.; Yin, Y., Formation of hollow silica colloids through a spontaneous dissolution–regrowth process. Angew. Chem. 2008, 120, 5890.
    97. Shiomi, S.; Kawamori, M.; Yagi, S.; Matsubara, E., One-pot synthesis of silica-coated copper nanoparticles with high chemical and thermal stability. J. Colloid Interface Sci. 2015, 460, 47.
    98. Long, D. A.; Long, D., Raman spectroscopy. McGraw-Hill New York: 1977; Vol. 206.
    99. Hollander, J. M.; Jolly, W. L., X-ray photoelectron spectroscopy. Acc. Chem. Res. 1970, 3, 193.
    100. Ertl, G.; Küppers, J., Low energy electrons and surface chemistry. VCH Verlagsgellschaft. Distribution, USA and Canada, VCH Publishers: 1985.
    101. Chang, C. C., Auger electron spectroscopy. Surf. Sci. 1971, 25, 53.
    102. Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y., Monodisperse copper nanocubes: synthesis, self-assembly, and large-area dense-packed films. Chem. Mater. 2014, 26, 1785.
    103. Tee, S. Y.; Ye, E.; Pan, P. H.; Lee, C. J. J.; Hui, H. K.; Zhang, S.-Y.; Koh, L. D.; Dong, Z.; Han, M.-Y., Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose. Nanoscale 2015, 7, 11190.
    104. Ye, E.; Zhang, S. Y.; Liu, S.; Han, M. Y., Disproportionation for growing copper nanowires and their controlled self‐assembly facilitated by ligand exchange. Chem. Eur. J. 2011, 17, 3074.
    105. Yang, H.-J.; He, S.-Y.; Tuan, H.-Y., Self-seeded growth of five-fold twinned copper nanowires: mechanistic study, characterization, and SERS applications. Langmuir 2014, 30, 602.
    106. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801.
    107. Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M., Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162.
    108. Cooper, J. K.; Franco, A. M.; Gul, S.; Corrado, C.; Zhang, J. Z., Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption. Langmuir 2011, 27.
    109. Yang, H.-J.; He, S.-Y.; Chen, H.-L.; Tuan, H.-Y., Monodisperse copper nanocubes: synthesis, self-assembly, and large-area dense-packed films. Chem. Mater. 2014, 26.
    110. Guo, H.; Chen, Y.; Cortie, M. B.; Liu, X.; Xie, Q.; Wang, X.; Peng, D.-L., Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 2014, 118, 9801.
    111. Ye, E.; Regulacio, M. D.; Bharathi, M. S.; Pan, H.; Lin, M.; Bosman, M.; Win, K. Y.; Ramanarayan, H.; Zhang, S.-Y.; Loh, X. J., An experimental and theoretical investigation of the anisotropic branching in gold nanocrosses. Nanoscale 2016, 8, 543.
    112. Wiscombe, W. J., Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505.
    113. Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z.; Xia, Y., Shape‐controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angewandte Chemie International Edition 2011, 50.
    114. DuChene, J. S.; Niu, W.; Abendroth, J. M.; Sun, Q.; Zhao, W.; Huo, F.; Wei, W. D., Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 2012, 25, 1392.
    115. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science 1968, 26.
    116. Zhang, M.; Cushing, B. L.; O’Connor, C. J., Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. Nanotechnology 2008, 19, 085601.
    117. Mine, E.; Yamada, A.; Kobayashi, Y.; Konno, M.; Liz-Marzán, L. M., Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of colloid and interface science 2003, 264, 385.
    118. Xue, C.; Chen, X.; Hurst, S. J.; Mirkin, C. A., Self‐Assembled Monolayer Mediated Silica Coating of Silver Triangular Nanoprisms. Adv. mater. 2007, 19, 4071.
    119. Chou, K.-S.; Chen, C.-C., The critical conditions for secondary nucleation of silica colloids in a batch Stöber growth process. Ceram. Inter. 2008, 34, 1623.
    120. Mine, E.; Konno, M., Secondary particle generation at low monomer concentrations in seeded growth reaction of tetraethyl orthosilicate. J. Chem. Eng. Jpn. 2001, 34, 545.
    121. Nagao, D.; Satoh, T.; Konno, M., A generalized model for describing particle formation in the synthesis of monodisperse oxide particles based on the hydrolysis and condensation of tetraethyl orthosilicate. J. Colloid Interface Sci. 2000, 232, 102.
    122. Pickering, S. U., Cxcvi.—emulsions. J. Chem. Soc 1907, 91, 2001.
    123. Yang, H.-H.; Zhang, S.-Q.; Chen, X.-L.; Zhuang, Z.-X.; Xu, J.-G.; Wang, X.-R., Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004, 76, 1316.
    124. Malik, M. A.; Wani, M. Y.; Hashim, M. A., Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials: 1st Nano Update. Arab. J. Chem. 2012, 5, 397.
    125. Underhill, R. S.; Jovanovic, A. V.; Carino, S. R.; Varshney, M.; Shah, D. O.; Dennis, D. M.; Morey, T. E.; Duran, R. S., Oil-filled silica nanocapsules for lipophilic drug uptake: Implications for drug detoxification therapy. Chem. mater. 2002, 14, 4919.
    126. Nad, S.; Sharma, P.; Roy, I.; Maitra, A., Anomalous nanostructured titanium dioxide. J. Colloid Interface Sci. 2003, 264, 89.
    127. Murrell, J. N., Michael James Steuart Dewar. 24 September 1918–11 October 1997. J.Soc. Comer. Chem: 1998; p 311.
    128. Zhu, D.; Feng, K.; Schelly, Z., Reverse micelles of Triton X-100 in cyclohexane: effects of temperature, water content, and salinity on the aggregation behavior. J. Phys. Chem. 1992, 96, 2382.
    129. Bogush, G.; Zukoski, C., Uniform silica particle precipitation: an aggregative growth model. J. Colloid Interface Sci. 1991, 142, 19.
    130. Ferrari, A. C., Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid Stte Commun. 2007, 143, 47.
    131. Basko, D., Boundary problems for Dirac electrons and edge-assisted Raman scattering in graphene. Phys. Rev. B 2009, 79, 205428.
    132. Ferrari, A.; Robertson, J., Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414.
    133. Thomsen, C.; Reich, S., Double resonant Raman scattering in graphite. Phys. Rev. Lett. 2000, 85.
    134. Vidano, R.; Fischbach, D.; Willis, L.; Loehr, T., Observation of Raman band shifting with excitation wavelength for carbons and graphites. Solid State Commun. 1981, 39, 341.
    135. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano lett. 2007, 7, 238.
    136. Cançado, L. G.; Jorio, A.; Martins Ferreira, E.; Stavale, F.; Achete, C.; Capaz, R.; Moutinho, M.; Lombardo, A.; Kulmala, T.; Ferrari, A., Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano lett. 2011, 11, 3190.
    137. Malard, L.; Pimenta, M.; Dresselhaus, G.; Dresselhaus, M., Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51.
    138. Dresselhaus, M.; Dresselhaus, G.; Hofmann, M., Raman spectroscopy as a probe of graphene and carbon nanotubes. Phil. Trans. R. Soc. A 2008, 366, 231.
    139. Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.
    140. Liu, H.; Liu, Y.; Zhu, D., Chemical doping of graphene. J. Mater. Chem. 2011, 21, 3335.
    141. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.; Waghmare, U.; Novoselov, K.; Krishnamurthy, H.; Geim, A.; Ferrari, A., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210.
    142. Poncharal, P.; Ayari, A.; Michel, T.; Sauvajol, J.-L., Raman spectra of misoriented bilayer graphene. Phys. Rev. B 2008, 78, 113407.
    143. Piscanec, S.; Lazzeri, M.; Mauri, F.; Ferrari, A.; Robertson, J., Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 2004, 93, 185503.
    144. Casiraghi, C., Doping dependence of the Raman peaks intensity of graphene close to the Dirac point. Phys. Rev. B 2009, 80, 233407.
    145. Ferreira, E. M.; Moutinho, M. V.; Stavale, F.; Lucchese, M.; Capaz, R. B.; Achete, C.; Jorio, A., Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 2010, 82, 125429.
    146. Yang, L.; Deslippe, J.; Park, C.-H.; Cohen, M. L.; Louie, S. G., Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 2009, 103, 186802.
    147. Tuinstra, F.; Koenig, J. L., Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126.
    148. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312.
    149. Kumar, R.; Mehta, B. R.; Bhatnagar, M.; Ravi, S.; Mahapatra, S.; Salkalachen, S.; Jhawar, P., Graphene as a transparent conducting and surface field layer in planar Si solar cells. Nanoscale Res. Lett 2014, 9, 349.

    無法下載圖示 校內:2022-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE