簡易檢索 / 詳目顯示

研究生: 吳惠君
Wu, Hui-Chun
論文名稱: 利用蛋白質體學分析膽道疾病病人之膽汁
The Proteomic Analysis of Human Bile in Patients with Biliary Tract Diseases
指導教授: 謝淑珠
Shiesh, Shu-Chu
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 硝化酪胺酸蛋白質體學膽汁膽結石
外文關鍵詞: proteomics, bile, nitrotyrosine, gallstone
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   不論良性及惡性的膽道疾病皆可造成膽道阻塞之症狀,但現今對於鑑別良性與惡性膽道疾病仍是一個很大的難題。膽道癌的病人求診時大都已錯過治療的時機,而想利用手術切除已侵犯到血管及膽道的癌組織是不可能的,所以找尋能早期診斷膽道癌的生物標誌是非常重要而迫切的。過去有許多生物標誌被利用來鑑別診斷膽道阻塞之原因,但是這些標誌的靈敏度及特異性均不夠好。為了提供早期正確的診斷及評估病人的預後,也需要新的生物標誌來幫助。蛋白質的硝化,被認為是一種轉譯後修飾作用,通常為發炎時產生的硝化壓力所導致。硝化壓力過去已被報導在許多疾病形成過程中扮演很重要的角色。本篇研究利用蛋白質體學之技術,建立不同膽道疾病的膽汁蛋白質圖譜,並探討可作為鑑別診斷之生物標誌及膽汁內硝化蛋白。藉著混合9位膽結石及膽道癌病人的膽汁,並先行去除膽汁內大量的白蛋白及脂質以得到更好解析度的圖譜。最後,利用二維電泳的技術成功地建立膽汁的蛋白質圖譜。在硝化蛋白質體學方面,我們先利用化學方法合成過氧亞硝基物,使其與蛋白質作用形成硝化蛋白,再注入兔子使其產生硝化酪胺酸抗體並檢測其效價。同時也利用毛細管電泳建立硝化酪胺酸的檢測。膽汁中的硝化蛋白質的偵測方法主要是結合二維電泳分析及硝化酪胺酸抗體西方墨點法。最後,對於在二維電泳分析膠體上有興趣的蛋白質點,利用質譜儀鑑定身分。硝化血紅素結合蛋白的功能分析,主是利用西方墨點法及增強性冷光聚丙烯胺膠體電泳方法進行研究,並進一步分析膽道疾病病人之血紅素結合蛋白型別分佈。本研究結果,分析比較不同族群的膽汁蛋白質圖譜差異性之表現,發現2個在膽道癌中較大量表現之蛋白質點,由質譜儀鑑定結果為elastase 3B。在膽道疾病病人膽汁內之硝化蛋白,發現有4個硝化酪胺酸陽性的蛋白質點在膽結石及膽道癌中皆有表現,但膽道癌量較少,從中選取3個蛋白質點由質譜儀鑑定,結果為人類血紅素結合蛋白。具有硝化酪胺酸之血紅素結合蛋白的功能分析中,發現硝化酪胺酸主要出現於β以及α2鏈;而具有硝化酪胺酸之血紅素結合蛋白,其與血紅素結合之能力也隨之下降。另一方面,分析血紅素結合蛋白型別在不同疾病分佈,膽結石族群與膽道癌相比較,其血紅素結合蛋白為2-1型及2-2型比例較高,且具有統計上意義(96% versus 86%, p<0.05)。總結來說,本研究建立了分析人類膽汁之二維電泳蛋白質圖譜,在膽道癌的膽汁中找到兩個具有潛力之生物標誌 - elastase 3B及硝化血紅素結合蛋白。Elastase 3B在膽道癌所扮演的角色需要進一步的確認及探討其功能。膽汁內血紅素結合蛋白在膽結石扮演重要之角色,可能藉由與血紅素結合能力改變所導致,而其所產生硝化酪胺酸之現象,顯示一氧化氮所衍生出的活性氮物質可能在膽道疾病扮演角色,而這樣的結果也將硝化壓力、血紅素代謝、膽道疾病之間的關係相連接。

     Both benign and malignant biliary tract disease can cause biliary obstruction. The differential diagnosis between them is difficult as the neoplastic foci may be trivial and combined with other benign diseases. Early detection of biliary cancers is important for the survival of patients as the advanced biliary cancers usually involve the bile ducts and vessels, which render the surgical resection impossible. Various markers have been used for differential diagnosis of biliary obstruction. However, they are neither sensitive nor specific. A novel marker with a better diagnostic efficacy is therefore needed. Nitration of proteins, a post-translational modification of proteins resulting from nitrosative stress, may play a role in the pathogenesis of various diseases. The aim of this study is to construct the maps of biliary proteome in order to search new biomarkers for differential diagnosis and studying pathogenesis of various biliary tract diseases by differential proteomic analysis and nitrotyrosine immunoblotting. Biliary proteins were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Composite samples were prepared by pooling biles from nine gallstone and nine biliay tract cancer patients. The albumin and lipid were removed before analysis to reduce the interference and achieve a better resolution. For the nitroproteome study, peroxynitrite, prepared by chemical reaction, was mixed with KLH to form nitrated proteins to immunize rabbits. Nitrotyrosine antibodies were expressed by rabbit immunization. A capillary electrophoresis method was developed for validating the presence of 3-nitrotyrosine in nitrated proteins. The nitrated proteins in bile were visualized by 2D-PAGE-based western blotting. The interesting protein spots were identified by mass spectrometry. The functional analysis of nitrated haptoglobin was done by western blot and enhanced CL PAGE analysis. The haptoglobin phenotype of patients was also determined by enhanced CL PAGE analysis. By comparing the proteomic maps of different groups, two protein spots of elastase 3B were found highly expressed in the biliary cancer group. Three nitrated proteins were found less expressed in the biliary cancer group, and were matched to haptoglobin. The sites of nitrotyrosine in haptoglobin were located in haptoglobin β and α2 chains. The binding activity of haptoglobin-hemoglobin was decreased in nitrated haptoglobin. In analysis of haptoglobin phenotype distribution, the gallstone group had significantly higher Hp2 carrier than cholangiocarcinoma group (96% versus 86%, p<0.05). In conclusion, the map of bile proteins has been successfully established. Two candidates - elastase 3B and nitrated haptoglobin were found by proteomic analysis. Our observations suggest that elastase 3B may be a biomarker for biliary cancers and further study is needed to validate its clinical use. The detection of nitrate haptoglobin in bile suggest that reactive nitrogen species derived from nitric oxide might involve in the pathogenesis of biliary tract diseases. The studies of nitrated haptoglobin might be able to link nitrosative stress, hemoglobin metabolism, and biliary tract disease together.

    總目錄 中文摘要….……………………………………………………........... Ⅰ 英文摘要……………………………………………………………......... Ⅲ 誌謝……………………………………………………………………….. Ⅴ 總目錄………………………………………………………………......... Ⅵ 表目錄………………………………………………………………......... Ⅸ 圖目錄………………………………………………………………......... Ⅹ 附錄目錄.................................................... ⅩⅡ 緒論…………………………………………………………………......... 1 材料與方法............................................................. 14 一、 人類膽汁收集及其處理保存……………………................. 14 1. 膽汁收集……………………………............................... 14 2. 膽汁處理………………………………………............... 14 二、 膽汁前處理之方法…………….………................................ 14 1. 蛋白質沉澱………………………………………........... 14 2. 膽汁白蛋白之去除………………………………........... 15 3. 膽汁脂質之去除…………………………………........... 15 4. 蛋白質濃度測定…………………………………........... 15 5. 硫酸十二酯鈉聚丙烯胺膠體電泳………………........... 15 6. 蛋白質染色: Coomassie blue stain….……........ 16 三、 蛋白質體學之方法.......…………………..................... 16 1. 蛋白質回溶.................................................. 16 2. 第一維電泳: 等電點聚焦 ( IEF, isoelectric focusing).... 17 3. 第二維電泳: 硫酸十二酯鈉聚丙烯胺膠體電泳............ 17 4. 蛋白質染色: 銀染 (Silver stain)…………………........... 18 5. 二維電泳膠片保存………………………………........... 18 6. 二維電泳膠體影像處理…………………………........... 19 7. 二維電泳膠體影像比對…………………………........... 19 8. 膠體之蛋白質身分鑑定…………………………........... 19 四、 硝化酪胺酸……………………………………..................... 20 1. 過氧亞硝基物製備……………………….……….......... 20 2. 過氧亞硝基物定量………………………………........... 20 3. 硝化蛋白製備……………………………….…….......... 20 4. 硝化蛋白定量………………………………….….......... 21 5. 毛細管電泳系統偵測硝化酪胺酸………….…….......... 21 6. 硝化酪胺酸多株抗體的製備………………….….......... 22 7. 多株抗體力價測定…………………………….….......... 23 8. 親和性管柱純化多株抗體…………………….….......... 23 9. 西方墨點法偵測含硝化酪胺酸之蛋白質…................. 25 五、 人類血紅素結合蛋白(Haptoglobin)之分析………............... 25 1. 人類血紅素結合蛋白之西方墨點法……………........... 25 2. 人類血紅素結合蛋白之增強性冷光聚丙烯胺膠體電泳分析 25 結果…………………………………………………………………......... 27 一、 建立人類膽汁蛋白質圖譜………………………................. 27 分析單一病人膽汁蛋白質圖譜………………………......... 27 去除白蛋白對二維電泳分析之影響……………................. 27 去除脂質對二維電泳分析之干擾………………................. 28 二、 分析癌症族群和膽結石族群之混合膽汁蛋白質圖譜......... 29 膽道癌及膽結石膽汁之蛋白質圖譜及其比對…................. 29 質譜儀鑑定之蛋白質結果………………………................. 29 三、 膽汁之硝化蛋白質體學……................................... 30 製備硝化酪胺酸多株抗體之結果....……………................. 30 膽汁內硝化蛋白質……………............................................. 31 質譜儀鑑定之硝化蛋白質結果…………………................. 32 四、 硝化血紅素結合蛋白之功能分析………………................. 33 硝化血紅素結合蛋白產生硝化酪胺酸之位置…................. 33 硝化血紅素結合蛋白與血紅素結合能力………................. 33 血紅素結合蛋白型別與膽道疾病之關係 34 討論………………..………………………………………………........... 35 總結…………………………………………………………………......... 42 參考文獻……………………………………………………………......... 43 表……………………………………………………………………......... 53 圖……………………………………………………………………......... 55 附錄…………………………………………………………………......... 75 自述…………………………………………………………………......... 83

    1. Norton J. Greenberger, Gustav Paumgartner. Disease of the gallbladder and bile ducts. Harrison's internal medicine 16th edition; 292:1880-1891
    2. Elferink RO. Cholestasis. Gut 2003;52 Suppl 2:ii42-48.
    3. Hofmann AF. Bile acid secretion, bile flow and biliary lipid secretion in humans. Hepatology. 1990;12:17S-22S; discussion 22S-25S.
    4. Hay, D.W. & Carey, M.C. Pathophysiology and pathogenesis of cholesterol gallstone formation. Semin. Liver Dis. 10, 159−170 (1990).
    5. Hofmann, A.F. Pathogenesis of cholesterol gallstones. J. Clin. Gastroenterol. 10 Suppl 2 S1−S11 (1988).
    6. Han SL, Zhu GB, Yao JG, Lan SH, Shao YF. Diagnosis and surgical treatment of primary hepatic cholangiocarcinoma. Hepatogastroenterology. 2005;52 (62):348-51.
    7. Masci E, Fanti L, Mariani A, Spagnolo S, Zuliani W, Castrucci M, Testoni PA, Tittobello A. Multidisciplinary conservative treatment of difficult bile duct stones: a real alternative to surgery. HPB Surg. 1997;10(4):229-33; discussion 234.
    8. Patel AP, Lokey JS, Harris JB, Sticca RP, McGill ES, Arrillaga A, Miller RS, Kopelman TR. Current management of common bile duct stones in a teaching community hospital. Am Surg. 2003;69(7):555-60; discussion 560-1.
    9. Bouchier IA. The formation of gallstones. Keio J Med. 1992;41(1):1-5. Review.
    10. Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology. 2005;128 (6):1655-67.
    11. Department of health (eds.). Average life tables of Taiwan-Fuchien area, The Republic of China, 1995, Department of Health, Taipei, 2003, pp 98-102
    12. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24(2):115-25.
    13. Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis. 2004;24(2):127-37.
    14. Sugawara H, Yasoshima M, Katayanagi K, et al. Relationship between interleukin-6 and proliferation and differentiation in cholangiocarcinoma. Histopathology 1998;33:145–153
    15. Chariyalertsak S, Sirikulchayanonta V, Mayer D, et al. Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma. Gut 2001;48:80–86
    16. Kang YK, Kim WH, Lee HW, et al. Mutation of p53 and k-ras and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma. Lab Invest 1999;79:477–483
    17. Furubo S, Harada K, Shimonishi T, et al. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma. Histopathology 1999;35:230–240
    18. Que FG, Phan VA, Phan VH, et al. Cholangiocarcinomas express Fas ligand and disable the Fas receptor. Hepatology 1999;30:1398–1404
    19. Okaro AC, Deery AR, Hutchins RR, Davidson BR. The expression of antiapoptotic proteins Bcl-2, Bcl-Xl, and Mcl-1 in benign, dysplastic and malignant biliary epithelium. J Clin Pathol 2001;54:927–932
    20. Ozaki S, Harada K, Sanzen T, et al. In situ nucleic acid detection of human telomerase in intrahepatic cholangiocarcinoma and its preneoplastic lesion. Hepatology 1999;30:914–919
    21. Ashida K, Terada T, Kitamura Y, Kaibara N. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. Hepatology 1998; 27:974–982
    22. Terada T, Okada Y, Nakanuma Y. Expression of immunoreactive matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human normal livers and primary liver tumors. Hepatology 1996;23:1341–1344
    23. Sirica AE. Cholangiocarcinoma: molecular targeting strategies for chemoprevention and therapy. Hepatology. 2005;41(1):5-15
    24. Anderson CD, Pinson CW, Berlin J, Chari RS. Diagnosis and treatment of cholangiocarcinoma. Oncologist. 2004;9(1):43-57. Review
    25. Gores GJ. Cholangiocarcinoma: current concepts and insights. Hepatology. 2003 May;37(5):961-9. Review.
    26. Khan SA. Davidson BR, Goldin R, et al.: Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut.2002; 51:Ⅵ1-Ⅵ19
    27. Chen CY, Shiesh SC, Tsao HC, Lin XZ. The Assessment of biliary CA 125, CA 19-9 and CEA in diagnosing cholangiocarcinoma -- The influence of sampling time and hepatolithiasis. Hepato-gastroenterol. 2002; 49:616-20.
    28. Chen CY, Shiesh SC. Rapid detection of biliary K-ras mutations using peptide specific nucleic acid mediated PCR-clamping hybridization probes technology – compared with RFLP method. Clin Chem. 2004;50(3):481-9.
    29. Wasinger VC, Cordwell SJ, Cerpa-Poljak A, Yan JX, Gooley AA, Wilkins MR, Duncan MW, Harris R, Williams KL, Humphery-Smith I. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis. 1995 ;16(7):1090-4.
    30. Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003; 302:605-608.
    31. Lindasy MA. Target discovery. Nature Rev Drug Discov. 2003;2:831-8.
    32. Wright GL Jr. SELDI proteinchip MS: a platform for biomarker discovery and cancer diagnosis. Expert Rev Mol Diag. 2002; 2: 549-63.
    33. Kennedy S. Proteomic profiling from human samples: the body fluid alternative. Toxical Letters. 2001; 120:379-84.
    34. Steen, H. and Pandey, A. Proteomics goes quantitative measuring protein abundance. Trends Biotechnol. 2002;20:361.
    35. Yanagida, M. Functional proteomics current achievements. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002;771:89-106.
    36. Okuzawa K, Franzen B, Lindholm J, Linder S, Hirano T, Bergman T, Ebihara Y, Kato H, and Auer G. Characterization of gene expression in clinical lung cancer materials by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1994;15:382-390.
    37. Tiselius A. Electrophoresis and chromatography in protein chemistry. Ann Ist Super Sanita. 1950;13(11-12):916-37.
    38. Smithies O, Poulik MD. Two-dimensional electrophoresis of serum proteins. Nature. 1956 Jun 2;177(4518):1033.
    39. Margolis J, Kenrick KC. Polyacrylamide gel-electrophoresis across a molecular sieve gradient. Nature. 1967;214(95):1334-6
    40. Margolis J, Kenrick KC. "Pregnancy protein" in polyacrylamide gradient-gel electrophoresis. Aust J Exp Biol Med Sci. 1969;47(5):637-41.
    41. Iborra F, Buhler JM. Protein subunit mapping. A sensitive high resolution method. Anal Biochem. 1976;74(2):503-11.
    42. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975;26(3):231-43.
    43. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007-21.
    44. Patterson SD, Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995;16(10):1791-814.
    45. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422 (6928):198-207. Review.
    46. Lilley KS, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Curr Opin Chem Biol. 2002;6(1):46-50.
    47. Georgiou HM, Rice GE, Baker MS. Proteomic analysis of human plasma: failure of centrifugal ultrafiltration to remove albumin and other high molecular weight proteins. Proteomics. 2001;1(12):1503-6.
    48. Barnouin K. Two-dimensional gel electrophoresis for analysis of protein complexes. Methods Mol Biol. 2004;261:479-98. Review.
    49. Fubini B, Hubbard A. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis.
    Free Radic Biol Med. 2003;34(12):1507-16. Review.
    50. Vertuani S, Angusti A, Manfredini S. The antioxidants and pro-antioxidants network: an overview. Curr Pharm Des. 2004;10:1677-1694.
    51. Hasebe N. Oxidative stress and magnesium Clin Calcium. 2005;15(2):194-202.
    52. Hale WB, Turner B, LaMont JT. Oxygen radicals stimulate guinea pig gallbladder glycoprotein secretion in vitro. Am J Physiol. 1987;253:G627-630.
    53. Eder MI, Miquel JF, Jongst D, Paumgartner G, von Ritter C. Reactive oxygen metabolites promote cholesterol crystal formation in model bile: role of lipid peroxidation. Free Radic Biol Med. 1996;20:743-749.
    54. Elek G, Rockenbauer A. The free radical signal of pigment gallstones. Klin Wochenschr 1982;60:33-35.
    55. Tiribelli C, Ostrow JD. New concepts in bilirubin chemistry, transport and metabolism: report of the Second International Bilirubin Workshop, April 9-11, 1992, Trieste, Italy. Hepatology. 1993;17:715-736.
    56. Leo MA, Aleynik SI, Siegel JH, Kasmin FE, Aleynik MK, Lieber CS. F2-isoprostane and 4-hydroxynonenal excretion in human bile of patients with biliary tract and pancreatic disorders. Am J Gastroenterol 1997;92:2069-2072.
    57. Shiesh SC, Chen CY, Lin XZ, Liu AZ, Tsao HC. Melatonin prevents pigment gallstone formation induced by bile duct ligation in guinea pigs. Hepatology. 2000;32:455-60.
    58. Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, Cook J, Pacelli R, Liebmann J, Krishna M, Ford PC, Mitchell JB. Chemical biology of nitric oxide: regulation and protective and toxic mechanisms. Curr. Top. Cell. Regul. 1996;34:159-87.
    59. Tamir S, Tannenbaum SR. The role of nitric oxide NO in the carcinogenic process. Biochim Biophys Acta. 1996;1288: F31-F36.
    60. Nakano T, Asagoshi K, Terato H, Suzuki T, Ide H. Assessment of the genotoxic potential of nitric oxide-induced guanine lesions by in vitro reactions with Escherichia coli DNA polymerase I.Mutagenesis. 2005;20(3):209-16.
    61. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR. DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA . 1992;89:3030-34 .
    62. Fehsel K, Kroncke KD, Meyer KL, Huber H, Wahn V, Kolb-Bachofen V. Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 1995;155:2858-65.
    63. Fukuo K, Hata S, Suhara T, Nakahashi T, Shinto Y, Tsujimoto Y, Morimoto S, Ogihara T.Nitric oxide induces upregulation of Fas and apoptosis in vascular smooth muscle. Hypertension. 1996;27: 823-6.
    64. Hentze MW, Kuhn LC. Molecular control of vertebrateiron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci USA. 1996;93:8175-82.
    65. Ambs S, Merriam WG, Bennett WP, Felley-Bosco E, Ogunfusika MO, Oser SM, Klein S, Shields PG, Billiar TR, Harris CC. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58:334-41.
    66. Vickers SM, MacMillan-Crow LA, Green M. Ellis C, Thompson JA. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg. 1999;134:245-51.
    67. Land SC, Rae C. iNOS initiates and sustains metabolic arrest in hypoxic lung adenocarcinoma cells: a mechanism of cell survival in the solid tumor core. Am J Physiol Cell Physiol. 2005;18:112-20
    68. Carreras MC, Pargament GA Carz SD, Poderoso JJ, Boveris A. Kinetics of nitric oxide and hydrogen peroxide production and formation of Peroxynitrite during the respiratory burst of human neutrophils. FEBS Lett. 1994;341:65-68.
    69. Kooy NW, Royall JA. Agonist-induced Peroxynitrite production from endothelial cells. Arch. Biochem Biophys. 1994;310:352-9.
    70. Nalwaya N, Deen WM. Peroxynitrite exposure of cells cocultured with macrophages. Ann Biomed Eng. ;32(5):664-76.
    71. Hess DR. Adverse effects and toxicity of nitric oxide. Respiratory care. 1999;44(3):315-29.
    72. Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992;5:834-42.
    73. Bartlett D, Church DF, Bounds PL, Koppenol WH. The kinetics of oxidation of L-ascorbic acid by Peroxynitrite. Free Radic Biol Med. 1995;18:85-92.
    74. Hogg N, Rice-Evans C, Darley-Usmar V, Wilson MT, Paganga G, Bourne L. The role of lipid hydroperoxides in the myoglobin-dependent oxidation of LDL. Arch Biochem Biophys. 1994;314:39-44.
    75. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly.Am J Physiol. 1996;271:C1424-37.
    76. Giannopoulou E, Katsoris P, Polytarchou C, Papadimitriou E. Nitration of cytoskeletal proteins in the chicken embryo chorioallantoic membrane. Arch Biochem Biophys. 2002;400(2):188-98.
    77. Halliwell B, Zhao K, Whiteman M. Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good: a personal view of recent controversies. Free Radic Res. 1999;31(6):651-69.
    78. Ischiropoulos H. Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. Arch Biochem Biophys. 1998;356(1):1-11.
    79. Berlett BS, Levine RL, Stdtman ER. Carbon dioxide stimulates peroxynitrite-mediated nitration of tyrosine residues and inhibits oxidation of methionine residues of glutamine synthetase: both modifications mimic effects of adenylation. Proc Natl Acad Sci U S A. 1998;95:2784-2789.
    80. Ehsan A, Sommer F, Schmidt A, Klotz T, Koslowski J, Niggemann S, Jacobs G, Engelmann U, Addicks K, Bloch W. Nitric oxide pathways in human bladder carcinoma. The distribution of nitric oxide synthases, soluble guanylyl cyclase, cyclic guanosine monophosphate, and nitrotyrosine. Cancer. 2002;95:2293-301.
    81. Kondo S. Toyokuni S. Tsuruyama T. Ozeki M. Tachibana T. Echizenya M. Hiai H. Onodera H. Imamura M. Peroxynitrite-mediated stress is associated with proliferation of human metastatic colorectal carcinoma in the liver. Cancer Lett. 2002;179:87-93.
    82. Ahn B, Han BS, Kim DJ, Ohshima H. Immunohistochemical localization of inducible nitric oxide synthase and 3-nitrotyrosine in rat liver tumors induced by N-nitrosodiethylamine. Carcinogenesis. 1999;20(7):1337-44.
    83. Pennathur S, Bergt C, Shao B, Byun J, Kassim SY, Singh P, Green PS, McDonald TO, Brunzell J, Chait A, Oram JF, O'brien K, Geary RL, Heinecke JW. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem. 2004;279(41):42977-83.
    84. Podrez EA, Schmitt D, Hoff HF, Hazen SL. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest. 1999;103(11):1547-60.
    85. Viera L, Ye YZ, Estevez AG, Beckman JS. Immunohistochemical methods to detect nitrotyrosine. Methods Enzymol. 1999;301:373-81. Review.
    86. Tsikas D, Caidahl K. Recent methodological advances in the mass spectrometric analysis of free and protein-associated 3-nitrotyrosine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;814(1):1-9.
    87. Tabi T, Magyar K, Szokoo E. Trace analysis of oxidized, nitated, and chlorinated aromatic amino acids by capillary electrophoresis with electroosmotic flow modification allowing large-volume sample stacking. Electrophoresis. 2005;26(10):1940-7.
    88. Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci U S A. 1998;95(20):11584-9.
    89. Souza JM, Choi I, Chen Q, Weisse M, Daikhin E, Yudkoff M, Obin M, Ara J, Horwitz J, Ischiropoulos H. Proteolytic degradation of tyrosine nitrated proteins. Arch Biochem Biophys. 2000;380(2):360-6.
    90. Zhan X, Desiderio DM. The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry. Biochem Biophys Res Commun. 2004;325(4):1180-6.
    91. Butterfield DA. Proteomics: a new approach to investigate oxidative stress in Alzheimer's disease brain. Brain Res. 2004;1000(1-2):1-7.
    92. Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ. Proteomic method identifies proteins nitrated in vivo during inflammatory challenge. Proc Natl Acad Sci USA. 2001;98(21):12056-61.
    93. Keulemans YC, Mok KS, de Wit LT, Gouma DJ, Groen AK. Hepatic bile versus gallbladder bile: a comparison of protein and lipid concentration and composition in cholesterol gallstone patients. Hepatology. 1998;28(1):11-6.
    94. Nakano K, Chijiiwa K. Reduced cholesterol metastability of hepatic bile and its further decline in gall bladder bile in patients with cholesterol gall stones.
    Gut. 1993;34(5):702-7.
    95. Tudyka J, Kratzer W, Kuhn K, Mason R, Wechsler JG, Adler G. Solitary versus multiple gallstones: the importance of total biliary protein concentration and other factors. Hepatogastroenterology. 1995;42(5):638-44.
    96. Yu L, Guan-Zang. Qualitative and quantitative comparison of gallbladder proteins from patients with and without cholesterol gallstones. Dig Dis Sci. 1990;35(1):47-9.
    97. Chen YY, Lin SY, Yeh YY, Hsiao HH, Wu CY, Chen ST, Wang AH. A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis. 2005;26(11):2117-27
    98. Baussant T, Bougueleret L, Johnson A, Rogers J, Menin L, Hall M, Aberg PM, Rose K. Effective depletion of albumin using a new peptide-based affinity medium. Proteomics. 2005;5(4):973-7.
    99. Gorg, A., Postel, W., Gunther, S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 1985;9: 531-604.
    100. Steel LF, Shumpert D, Trotter M, Seeholzer SH, Evans AA, London WT, Dwek R, Block TM. A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteomics. 2003;3 (5):601-9.
    101. Jaiswal M, LaRusso NF, Shapiro RA, Billiar TR, Gores GJ. Nitric oxide-mediated inhibition of DNA repair potentiates oxidative DNA damage in cholangiocytes. Gastroenterology. 2001;120(1):190-9
    102. Wu CT, Eiserich JP, Ansari AA, Coppel RL, Balasubramanian S, Bowlus CL, Gershwin ME, Van De Water J. Myeloperoxidase-positive inflammatory cells participate in bile duct damage in primary biliary cirrhosis through nitric oxide-mediated reactions. Hepatology. 2003;38(4):1018-25.
    103. Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics. 2005;5(4):1062-74.
    104. Helman M, Givol D. Isolation of nitrotyrosine-containing peptides by using an insoluble-antibody column. Biochem J. 1971;125(4):971-4.
    105. Khan J, Brennand DM, Bradley N, Gao B, Bruckdorfer R, Jacobs M. 3-Nitrotyrosine in the proteins of human plasma determined by an ELISA method Biochem J. 1998;332 (Pt 3):807-8.
    106. Kaur H, Halliwell B. Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett. 1994 Aug 15;350(1):9-12
    107. Shigenaga MK. Quantitation of protein-bound 3-nitrotyrosine by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 1999;301:27-40. Review.
    108. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem. 1997 Feb 7;272(6):3520-6.
    109. Maeso N, Cifuentes A, Barbas C. Large-volume sample stacking-capillary electrophoresis used for the determination of 3-nitrotyrosine in rat urine. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;809(1):147-52.
    110. Tani T, Ohsumi J, Mita K, Takiguchi Y. Identification of a novel class of elastase isozyme, human pancreatic elastase III, by cDNA and genomic gene cloning. J Biol Chem. 1988;263(3):1231-9.
    111. Piva, M., Horowitz, G. M., and Sharpe-Timms, K.L. Interleukin-6 differentially stimulates haptoglobin production by peritoneal and endometriotic cells in vitro: a model for endometrial-peritoneal interaction in endometriosis. J. Clin. Endocrinol. Metab. 2001;86:2553–256.
    112. Bowman BH. Haptoglobin. In: Bowman BH, ed. Hepatic plasma protein. San Diego: Academic Press. 1993:159-67.
    113. Schultze HE, Hermans JF. Nature and metabolism of extracellular protein. In: Schultze HE, Hermans JF, eds. Molecular biology of human proteins. Amsterdam: Elsevier, 1996:384-402.
    114. Xie, Y., Li, Y., Zhang, Q., Stiller, M. J., Wang, C. L., and Streilein, J. W. haptoglobin is a natural regulator of Langerhans cell function in the skin. J. Dermatol. Sci. 2000;24:25–37.
    115. Oh, S. K., Very, D. L., Walker, J., Raam, S., and Ju, S. T. Ananalogy between fetal haptoglobin and a potent immunosuppressant in cancer. Cancer Res. 1987;47:5120–5126.
    116. Cid, M. C., Grant, D. S., Hoffman, G. S., Auerbach, R., Fauci, A. S., and Kleinman, H. K. Identification of haptoglobin as an angiogenic factor in sera from patients with systemic vasculitis. J. Clin. Investig. 1993;91:977–985.
    117. Smithies O, Connell GE, Dixon GH. Inheritance of haptoglobin subtypes. Am J Hum Hered. 1962;14:14-21.
    118. Black, J. A., Dixon, G. H. Amino-acid sequence of alpha chains of human haptoglobins. Nature 1968;218:736-741.
    119. Yamashita G, Ginanni Corradini S, Secknus R, Takabayashi A, Williams C, Hays L, Chernosky AL, Holzbach RT. Biliary haptoglobin, a potent promoter of cholesterol crystallization at physiological concentrations. J Lipid Res. 1995;36(6):1325-33.
    120. Van Erpecum KJ, Portincasa P, Dohlu MH, van Berge-Henegouwen GP, Jungst D. Biliary pronucleating proteins and apolipoprotein E in cholesterol and pigment stone patients. J Hepatol. 2003 Jul;39(1):7-11.
    121. Yu SJ, Boudreau F, Desilets A, Houde M, Rivard N, Asselin C. Attenuation of haptoglobin gene expression by TGFbeta requires the MAP kinase pathway. Biochem Biophys Res Commun. 1999;259(3):544-9.
    122. Urushibara N, Kumazaki T, Ishii S. Hemoglobin-binding site on human haptoglobin. Identification of lysyl residues participating in the binding. J Biol Chem. 1992;267(19):13413-7.
    123. Dobryszycka W, Bec-Katnik I. Effect of modification on physico-chemical and biological properties of haptoglobin. Acetylation, iodination and nitration. Acta Biochim Pol. 1975;22(2):143-53.
    124. Ye B, Cramer DW, Skates SJ, Gygi SP, Pratomo V, Fu L, Horick NK, Licklider LJ, Schorge JO, Berkowitz RS, Mok SC. haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin Cancer Res. 2003;9(8) : 2904-11.
    125. Braeckman L, De Bacquer D, Delanghe J, Claeys L, De Backer G. Associations between haptoglobin polymorphism, lipids, lipoproteins and inflammatory variables. Atherosclerosis. 1999;143(2):383-8.
    126. Kasvosve I, Gomo ZA, Gangaidzo IT, Mvundura E, Saungweme T, Moyo VM, Khumalo H, Boelaert JR, Gordeuk VR, Delanghe JR. Reference range of serum haptoglobin is haptoglobin phenotype-dependent in blacks. Clin Chim Acta. 2000;296(1-2):163-70.
    127. Spagnuolo MS, Cigliano L, D'Andrea LD, Pedone C, Abrescia P. Assignment of the binding site for haptoglobin on apolipoprotein A-I. J Biol Chem. 2005;280(2):1193-8.
    128. Dryla A, Gelbmann D, von Gabain A, Nagy E. Identification of a novel iron regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity.
    Mol Microbiol. 2003;49(1):37-53.

    下載圖示 校內:2007-09-02公開
    校外:2007-09-02公開
    QR CODE