簡易檢索 / 詳目顯示

研究生: 張宇含
Chang, Yu-Han
論文名稱: 張量投票法及體元法應用於影像密匹配建物點雲之特徵萃取
Feature Extraction from Dense Image Matching Point Clouds of Buildings by Using Tensor Voting Method and Voxel Method
指導教授: 蔡展榮
Tsay, Jaan-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 163
中文關鍵詞: 影像密匹配體元法張量投票法房屋表面特徵萃取點雲偵錯
外文關鍵詞: Dense Image Matching, Voxel Method, Tensor Voting Method, Building Surface Feature Extraction, Point Clouds Blunder Detection
相關次數: 點閱:166下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用多張重疊影像進行逐像元之影像密匹配,獲得被攝影物體表面之大量高密度點雲,可更細緻地描述物表面之特徵,但由於其仍為離散點雲,故必須先找出具有意義之幾何特徵,包括物表面特徵點、線、面或體,才可提供後續應用所需的各種三維模型。另外,由密點雲萃取出幾何特徵亦可大幅降低資料量,故可降低電腦在後續的資料傳輸、儲存、處理、展示等應用之負擔。
    本文提出長方體元演算法,使用30張空照影像經密匹配軟體SURE(SUrface REconstruction)產生密點雲,並分別以體元法及張量投票法萃取房屋表面特徵。長方體元法利用事先定義之長方體做為體元,對房屋表面密點雲進行最小二乘套合,可求得房屋模型參數和房屋表面的特徵點、線、面及體,並可應用於密點雲之偵錯、剔錯。張量投票法則利用張量分析獲得各點之特徵強度,並據此利用區域成長法進行點雲分群,最終獲得建物之幾何特徵。在實驗測試中,首先以模擬資料測試及分析點密度及點分布對於體元法參數及張量投票法求解品質之影響,再使用真實房屋表面的密點雲資料施行長方體元法平差計算,並以人工立體量測成果做為地面檢核資料,分析特徵萃取成果之品質。
    張量投票法之模擬資料成果顯示,在建物12條邊線中,成功萃取出4條垂直地面邊線,建物平面則由許多零碎小區塊構成,另外,點密度過大易導致邊緣線萃取失敗。體元法之真實資料萃取成果顯示,在長方體形狀之房屋表面點雲中,其角點坐標與地面檢核資料的均方根差值RMSD為1.21~2.32 GSD之間,12條房屋表面邊線之萃取成果與地面檢核資料邊線之平均距離為1.03~5.05 GSD之間,距離的均方根值為0.05~1.11 GSD之間。而其點雲偵錯結果顯示,錯誤點約佔建物點雲總點數之2.11%,大部份分布於陰影區、鄰近長方體建物表面邊線區及細微構造處(如兩鄰近平行牆面間)。另外,以真實建物二為例,受到2條南北向航帶和2條東西向航帶共4條航帶11張空照影像密匹配之房屋得到的平均點密度(單位:pt./g.)分別為牆面0.32、0.36、0.95、1.47和屋頂面10.29及地面4.38。

    In this thesis, Tensor Voting Method(TVM) and Voxel Method(VM) are used to extract the geometry features, such as points, lines, planes and volume, from the dense matching point clouds of buildings. Moreover, VM could be used to detect blunders in the dense point clouds. After the simulated data are used to analyze the factors that could affect on the result of these two methods, dense image matching point clouds of three buildings by using 30 aerial images are used to derive their geometry features. The extraction result of simulated data indicates that TVM is likely to fail to extract features possibly due to low signal-to-noise ratio of points on local planes of buildings. On the other hand, VM is tested to analyze how the density and distribution of dense points on building surface could affect feature extraction quality. The result of Voxel Method with the use of real data shows the RMSD of point coordinates determined is about 1.21~2.32 GSD by comparing with the corresponding ground check data. The edges determined by Voxel method and the check data have the distances of about 1.03~5.05 GSD and RMSD of about 0.05~1.11 GSD.

    中文摘要 I Extended Abstract Ⅲ 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XIII 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 3 1-3 文獻回顧 4 1-3-1 物表面密點雲之取得及影像密匹配之發展 4 1-3-2 密匹配點雲偵錯與精度 8 1-3-3 點雲特徵萃取之方法 9 1-3-4 點雲特徵萃取之應用 13 1-4 研究流程 17 1-5 論文架構 17 第二章 方法 19 2-1 產製密點雲─ SURE 19 2-1-1 方法概述 19 2-1-2 SGM演算法說明 19 2-1-3 t-SGM演算法說明 23 2-2 體元法(Voxel Method) 25 2-2-1 方法概述 25 2-2-2 演算法說明 25 2-3 張量投票法(Tensor Voting Method) 33 2-3-1 張量 33 2-3-2 演算法說明 34 第三章 模擬資料實驗成果 42 3-1 屋頂面、牆面及地面之點密度 42 3-2 模擬建物點雲成果分析─張量投票法 47 3-3 模擬建物點雲成果分析─體元法 52 3-3-1 不同GSD的影像產製之密點雲 54 3-3-2 牆面點密度低但分布均勻之密點雲 58 3-3-3 牆面點密度低且分布不均勻 68 3-3-4 牆面有空洞(無點雲)區 83 3-3-5 小結 95 第四章 真實資料實驗成果 97 4-1 測試案例及其地面檢核資料之取得 99 4-2 密匹配點精度估算 110 4-3 真實建物成果分析 111 4-3-1 真實建物一 112 4-3-2 真實建物二 122 4-3-3 真實建物三 141 第五章 結論與建議 151 參考文獻 157

    內政部地政司,「三維房屋模型建置作業規範草案」,臺北,2009。

    方冠傑,「以最小生成樹為基礎的醫學影像分割法」,國立交通大學資訊科學系碩士論文,新竹,2004。

    王聖鐸,「以浮測模型理論萃取三維空間資訊-以建物重建為例」,國立成功大學測量及空間資訊學系博士論文,臺南,2005。

    李宏君及邱式鴻,「由光達點雲資料進行點、線、面特徵分類之研究」,第二十四屆測量學術及應用研討會論文集,第389-396頁,2005。

    李硯婷,「空照影像密匹配成果偵錯之瓶頸及解決辦法」,國立成功大學測量及空間資訊學系碩士論文,臺南,2014。

    吳紫葦,「利用句法與統計之文法搭配與多字詞語之擷取」,國立清華大學資訊系統與應用研究所碩士論文,新竹,2006。

    林柏丞,「張量分析應用於結合光達資料與地形圖重建建物模型的品質預估之研究」,國立成功大學測量及空間資訊學系博士論文,臺南,2012。

    張智安及高崇軒,「以多張近景影像萃取牆面三維線段之研究」,航測及遙測學刊,第16(2),第127-137頁,2011。

    張中豪,「自適性張量分析應用於光達點雲特徵萃取」,國立臺灣大學土木工程學系碩士論文,臺北,2013。

    陳彥嘉,「以區域性鄰集為基礎之相似度轉換方法應用於分群演算法」,國立交通大學資訊科學及工程研究所碩士論文,新竹,2012。

    湯凱佩及曾義星,「以共軛平面特徵進行光達點雲資料結合之平差模式」,2005年內政部「辦理LIDAR之高精度及高解析度數值地形測繪、資料庫建置與應用推廣工作案」成果發表暨應用研討會論文集,第15-24頁,2005。

    葉炘,「Tensor Voting 演算法應用於光達數值地形結構線萃取之可行性分析」,國立成功大學測量及空間資訊學系碩士論文,臺南,2008。

    劉金燁,「連結長方體法之設計與初步成果之品質評估」,國立成功大學測量及空間資訊學系碩士論文,臺南,2007。

    劉柳明、王加陽及羅安,「決策表屬性集分解的等價性研究」,計算機應用研究,24(8),第67-69頁,2007。

    蔡展榮,「財團法人成大研究發展基金會出國結案報告書-到德國參加第55屆航測週與Intergeo」,2015。

    Baltsavias, E. P. “Airborne Laser Scanning: Basic Relations and Formulas.” ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), pp. 199-214. (1999).

    Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. “Applications of 3D City Models: State of The Art Review.” ISPRS International Journal of Geo-Information, 4(4), 2842-2889. (2015).

    Birchfield, S., & Tomasi, C. “Depth Discontinuities by Pixel-to-pixel Stereo.” International Journal of Computer Vision, 35(3), pp. 269-293. (1999).

    Borisenko, A. I., & Tarapov, I. E. “Vector and Tensor Analysis with Applications.” Courier Corporation. (1979).

    Brenner, C. “Extraction of Features from Mobile Laser Scanning Data for Future Driver Assistance Systems.” In Advances in GIScience , pp. 25-42, Springer Berlin Heidelberg. (2009).

    Cavegn, S., Haala, N., Nebiker, S., Rothermel, M., & Tutzauer, P. “Benchmarking High Density Image Matching for Oblique Airborne Imagery.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Zürich, 3, pp.45-52. (2014).

    Cheng, L., Gong, J., Chen, X., & Han, O. “Building Boundary Extraction from High Resolution Imagery and Lidar Data.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XXXVII. Part 3B, Beijing. pp. 693-698. (2008).

    Eicker, U., Nouvel, R., Duminil, E., & Coors, V. “Assessing Passive and Active Solar Energy Resources in Cities Using 3D City Models.” Energy Procedia, 57, pp. 896-905. (2014).

    Fritsch, D., & Rothermel, M. “Oblique Image Data Processing – Potential, Experiences and Recommendations.” Photogrammetry Week 2013, Germany. (2013).

    Gehrke, S., Morin, K., Downey, M., Boehrer, N., & Fuchs, T. “Semi-global Matching: An Alternative to Lidar for DSM Generation.” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Calgary, AB, 38 (B1), (2010).

    Haala, N. “Multiray Photogrammetry and Dense Image Matching.” Photogrammetry Week 2011, Germany. (2011).

    Haala, N. “The Landscape of Dense Image Matching Algorithms.” Photogrammetry Week 2013, Germany. (2013).

    Haala, N., & Rothermel, M. “Image-based 3D Data Capture in Urban Scenarios.” Photogrammetry Week 2015, Germany. (2015).

    Hartley, R., & Zisserman, A. “Multiple View Geometry in Computer Vision (2nd ed.)” Cambridge University Press, Chap.12. (2004).

    Hirschmüller, H. “Stereo Processing by Semiglobal Matching and Mutual Information.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), pp. 328-341. (2008).

    Kersten, T. P., & Lindstaedt, M. “Automatic 3D Object Reconstruction from Multiple Images for Architectural, Cultural Heritage and Archaeological Applications Using Open-source Software and Web Services.” Photogrammetrie, Fernerkundung, Geoinformation, 2012(6), pp. 727-740. (2012).

    Kim, C., & Habib, A. “Object-based Integration of Photogrammetric and LiDAR Data for Automated Generation of Complex Polyhedral Building Models.” Sensors, 9(7), pp. 5679-5701. (2009).

    Kurakula, V. “A GIS-based Approach for 3D Noise Modelling Using 3D City Models.” Master’s Thesis, International Institute for Geo-information Science and Earth Observation, Enschede, The Netherlands. (2007).

    Kwan, M. P., & Lee, J. “Emergency Response after 9/11: The Potential of Real-time 3D GIS for Quick Emergency Response in Micro-spatial Environments.” Computers, Environment and Urban Systems, 29(2), pp. 93-113. (2005).

    Lafarge, F., & Mallet, C. “Creating Large-scale City Models from 3D-point Clouds: A Robust Approach with Hybrid Representation.” International Journal of Computer Vision, 99(1), pp. 69-85. (2012).

    Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., & Wiechert, A. “Point Clouds : Lidar versus 3D Vision.” Photogrammetric Engineering & Remote Sensing, 76(10), pp. 1123-1134. (2010).

    Lin, Y., Wang, C., Cheng, J., Chen, B., Jia, F., Chen Z., & Li J. “Line Segment Extraction for Large Scale Unorganized Point Clouds.” ISPRS Journal of Photogrammetry and Remote Sensing,102, pp. 172-183. (2015).

    Maas, H. G., & Vosselman, G. “Two Algorithms for Extracting Building Models from Raw Laser Altimetry Data.” ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), pp. 153-163. (1999).

    Medioni, G., Tang, C. K., & Lee, M. S. “Tensor Voting: Theory and Applications.” Proceedings of RFIA, Paris, France, 3. (2000).

    Montgomery, D. C. “Introduction to Statistical Quality Control (6th ed.)” John Wiley & Sons. (2008).

    Montgomery, D. C., & Runger, G. C. “Applied Statistics and Probability for Engineers (5th ed.).” John Wiley & Sons. (2010).

    Nex, F., & Remondino, F. “UAV for 3D Mapping Applications: A Review.” Applied Geomatics, 6(1), pp.1-15. (2014).

    Rabbani, T. “Automatic Reconstruction of Industrial Installations Using Point Clouds and Images.” NCG Nederlandse Commissie voor Geodesie Netherlands Geodetic Commission. (2006).

    Rau, J. Y., Jhan, J. P., & Hsu, Y. C. “Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classification in An Urban Environment.”, IEEE Transactions on Geoscience and Remote Sensing, 53(3), pp. 1304-1319. (2015).

    Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F. “State of the Art in High Density Image Matching.” Photogrammetric Record, 29(146), 144-166. (2014).

    Rothermel, M., Wenzel, K., Fritsch, D., & Haala, N. “SURE: Photogrammetric Surface Reconstruction from Imagery.” Proceedings LC3D Workshop, Berlin, December. (2012).

    Scharstein, D., & Szeliski, R. “A Taxonomy and Evaluation of Dense Two-frame Stereo Correspondence Algorithms.” International Journal of Computer Vision, 47(1-3), pp. 7-42. (2002).

    Schuster, H. F. “Segmentation of Lidar Data Using the Tensor Voting Framework.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 35(B3), pp. 1073-1078. (2004).

    Szalay, A. S. & Blakeley, J. A. “Gray's Laws: Database-centric Computing in Science.” The Fourth Paradigm - Data-intensive Scientific Discovery, pp. 5-11. (2009).

    Takase, Y., Sho, N., Sone, A., & Shimiya, K. “Automatic Generation of 3D City Models and Related Applications.” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(5). (2003).

    Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. “Hough-transform and Extended RANSAC Algorithms for Automatic Detection of 3D Building Roof Planes from Lidar Data.” In Proceedings of the ISPRS Workshop on Laser Scanning, Vol. 36, pp. 407-412. (2007)

    Thill, J. C., Dao, T. H. D., & Zhou, Y. “Traveling in the Three-dimensional City: Applications in Route Planning, Accessibility Assessment, Location Analysis and Beyond.” Journal of Transport Geography, 19(3), pp. 405-421. (2011).

    Wagner, W. “Big Data Infrastructures for Processing Sentinel Data.” Photogrammetry Week 2015, Germany. (2015).

    Wang, J., & Shan, J. “Segmentation of LiDAR Point Clouds for Building Extraction.” In American Society for Photogrammetry and Remote Sensing, Annual Conference, Baltimore, MD , pp. 9-13. (2009).

    Wei, S. “Building Boundary Extraction Based on Lidar Point Clouds Data”, Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, pp. 157-161. (2008).

    Wenzel, K., Abdel-Wahab, M., Cefalu, A., & Fritsch, D. “A Multi-Camera System for Efficient Point Cloud Recording in Close Range Applications.” LC3D workshop, pp. 37-46. (2011).

    Wenzel, K., Rothermel, M., Haala, N., Fritsch, D. “SURE-The ifp Software for Dense Image Matching.” Photogrammetry Week 2013, Germany. (2013).

    Yang, B., Fang, L., & Li, J. “Semi-automated Extraction and Delineation of 3D Roads of Street Scene from Mobile Laser Scanning Point Clouds” ISPRS Journal of Photogrammetry and Remote Sensing, 79, pp. 80-93. (2013).

    Zhou, M., Xia, B., Su, G., Tang, L., & Li, C., “Study on the Target Feature Extraction from LiDAR Point Clouds”, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, Part B3b, Beijing, pp. 309-311. (2008).

    下載圖示 校內:2019-08-30公開
    校外:2019-08-30公開
    QR CODE