| 研究生: |
邱厚諭 Ciou, Hou-Yu |
|---|---|
| 論文名稱: |
HA-188鈷基超合金管件液壓成形之可成形性分析 Formability Analysis of HA-188 Cobalt-base Superalloy in Tube Hydroforming |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 鈷基超合金 、管件液壓成形 、可成形性 |
| 外文關鍵詞: | Cobalt-base superalloy, tube hydroforming, formability |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文透過實驗與解析解決定出HA-188鈷基超合金管材塑流應力,並評估延性破壞準則對管件液壓成形製程之雙軸拉伸之破壞應變預測的適用性。
文中針對IST-1000液壓成形機設計出一組非軸對稱之管件液壓鼓脹模具,非軸對稱之設計目的在於防止直縫焊管上的焊道影響可成形性試驗結果。進行管件液壓自由鼓脹實驗建立出HA-188鈷基超合金之材料參數,透過增量自由鼓脹試驗與解析解方式獲得管材之塑流應力曲線,與單軸拉伸試驗所獲得之塑流應力曲線比較,比較結果兩者趨勢近似。透過本文數學解析模式與管件液壓自由鼓脹增量試驗可以獲得管件素材之塑流應力曲線。
藉由管件液壓自由鼓脹實驗結果所獲得之破壞資訊,比較有與無靜液壓項之延性破壞準則所建立成形極限曲線之差異,並提出加入應變路徑修正之含有靜液壓項之延性破壞準則,建立第一象限之成形極限曲線。結果顯示,有靜液壓項與應變路徑修正之延性破壞準則較其他之延性破壞準則應用於管件液壓成形破壞預測上具較高的準確性。
In this study, the flow stress of HA-188 cobalt-base superalloy tube was determined by experiments and analytical solution, and the applicability of bi-axial fracture strains prediction by using ductile fracture criteria was evaluated for tube hydroforming process.
Non-axisymmetric die design was applied for IST-1000 hydraulic forming machine. The purpose of non-axisymmetric die design is to prevent from the welding effects on welded tube during the formability test. By using tube hydroforming bugling test the material data of HA-188 cobalt-based superalloy was established. The flow stress which was established by incremental free bulge test and numerical analysis was compared with the flow stress from simple tensile test, and the result showed the flow stress curves are similar. From this result, a method to determine the flow stress of tube is proposed with the numerical analysis model and tube incremental free bulge test.
With the fracture data form experimental results of tube free bulge test, the differences from forming limit curve established by using ductile failure criterion without hydrostatic stress term and with hydrostatic stress term were evaluated. The modified ductile failure criterion which included hydrostatic stress term with the strain path was proposed. The experimental results show that the modified ductile fracture criterion included hydrostatic stress term and strain path has better accuracy than other ductile fracture criteria.
Ahmed, M. and M. S. J. Hashmi, "Finite-element analysis of bulge forming applying pressure and in-plane compressive load", Journal of Materials Processing Technology 77(Elsevier Science), pp.95-102, 1998.
Ahmed, M. and M. S. J. Hashmi, "Three-dimensional finite-element simulation of bulge forming", Journal of Materials Processing Technology 119(1-3), pp.387-392, 2001.
ASTM, "Standard Test Method for Tensile Strain-Hardening Exponents (n -Values) of Metallic Sheet Materials", E646-07, 2007.
ASTM, "Standard Test Methods for Tension Testing of Metallic Materials" , E8M-09, 2009.
Atkins, A. G., "Possible explanation for unexpected departures in hydrostatic tension-fracture strain relations", Metal Science 15, pp.81-83, 1981.
Banabic, D., "Limit strains in the sheet metals by using the new Hill's yield criterion", Journal of Materials Processing Technology 92-93, pp.429-432, 1999.
Bortot, P., E. Ceretti and C. Giardini, "The determination of flow stress of tubular material for hydroforming applications" Journal of Materials Processing Technology 203, pp.381-388, 2008.
Bridfman, P. W., "Large plastic flow and fracture" New York Toronto London, McGRAW-HILL BOOK COMPANY INC., 1952.
Cockcroft, M. G. and D.J. Latham, "Ductility and the workability of metals", Journal of the institute of metals 96, pp.33, 1968.
Fuchizawa, S., "Influence of plastic anisotropy on the deformation of thin-walled tubes in buging forming", Advanced Technology of Plasticity 2, pp.727-732, 1987.
Fuchizawa, S. and M. Narazaki, "Bulge test for determining stress-strain characteristics of thin tubes", Advanced Technology of plasticity, Beijing, China, ICTP. 1, pp.488, 1993.
Ghosh, A. K., "Plastic Flow Properties in Relation to Localized Necking in Sheets", Mechanics of Sheet Metal Forming. Material Behavior and Deformation Analysis 17-18, pp.287-312, 1978.
Goodwin, G. M., "Application of strain analysis on sheet metal forming problems in the press shop", SAE paper No. 680093, 1968.
Hill, R., "On discontinuous plastic states, with special reference of localized necking in thin sheets", Journal of the Mechanics and Physics of Solids 1, pp.19-30, 1952.
Hill, R., "Theoretical plasticity of textured aggregates", Mathematical Proceedings of the Cambridge Philosophical Society 85, pp.179-191, 1979.
Hwang, Y.M., Y.K. Lin and T. Altan, "Evaluation of tubular materials by a hydraulic bulge test", International Journal of Machine Tools and Manufacture 47(2), pp.343-351, 2007.
Keeler, S. P. and W.A. Backofen, "Plastic instability and fracture in sheets stretched over rigid punches", Trans, ASM 56, pp.25, 1963.
Manabe, K. and S. Mori, "Bulge forming of thin-walled tubes by microcomputer controlled hydraulic press", Advanced Technology of Plasticity 1, pp.279-284, 1984.
Marciniak, Z. and K. Kuczynski, "Limit strains in the processes of stretch-forming sheet metal", International Journal of Mechanical Sciences 9(9), pp.609-612, IN601-IN602, 613-620, 1967.
McClintock, F. A., "A criterion of ductile rupture by void nucleation and growth", Journal of applied Mechanics 35, pp.363, 1968.
Norris, D. M., J. E. Reaugh, B. Moran and D. F. Quinones, "A Plastic-Strain, Mean-Stress Criterion for Ductile Fracture", Journal of Engineering Materials and Technology 100, pp.279-286, 1978.
Oyane, M., T. Sato, K. Okimoto and S. Shima, "Criteria for ductile fracture and their applications", Journal of Mechanical Working Technology 4(1), pp.65-81, 1980.
Sokolowski, T., K. Gerke, M. Ahmetoglu and T. Altan, "Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes", Journal of Materials Processing Technology 98, pp.34-40, 2000.
Song, W. J., S.C. Heo, J. Kim and B.S. Kang, "Investigation on preformed shape design to improve formability in tube hydroforming process using FEM", Journal of Materials Processing Technology 177, pp.658-622, 2006.
Song, W. J., J. Kim and B.S. Kang, "Experimental and analytical evaluation on flow stress of tubular material for tube hydroforming simulation", Journal of Materials Processing Technology 191, pp.368-371, 2007.
Song, W. J., S. C. Heo, T. W. Ku, J. Kim and B. S. Kang, "Evaluation of effect of flow stress characteristics of tubular material on forming limit in tube hydroforming process", International Journal of Machine Tools and Manufacture 50(9), pp.753-764, 2010.
Swift, H. W., "Plastic instability under plane stress", Journal of the Mechanics and Physics of Solids 1, pp.1-18, 1952.
Vacher, P., R. Arrieux and L. Tabourot, "Analysis of a criterion of deep drawing operation capability for thin orthotropic sheets", Journal of Materials Processing Technology 78, pp.190-197, 1998.
Venter, R., W. Johnson and M.C. deMalherbe, "The limit strains of inhomogeneous sheet metal in biaxial tension", international Journal of Mechanical Sciences 13, pp.299-308, 1971.
William, F. H. and C. Robert, "Metal Forming: Mechanics and Metallurgy", Cambridge University Press, 2011.
Woo, D. M., "Tube-Bulging Under Internal Pressure and Axial Force", Journal of Engineering Materials and Technology 95(4), pp.219-223, 1973.
Yang, B., W.G. Zhang and S.H. Li, "Analysis and finite element simulation of the tube bulge hydroforming process", The International Journal of Advanced Manufacturing Technology 29, pp.453-458, 2006.
佘振華,"板金多道次成形之成形極限研究",機械工程研究所,台南,國立成功大學,碩士論文,1989。
周金龍,"異向性板金材料可成形性之研究",機械工程研究所,台南,國立成功大學,碩士論文,1988。
昆山勝基模具鋼材有限公司-FDAC模具鋼材-日本FDAC, "http://www.yj-z.com/zt338949/zh-tw/Category_2369966_1.html", 20110610。
林義凱,"管材液壓鼓脹成形之成形性分析",機械與機電工程研究所,高雄,國立中山大學,博士論文,2005。
林群福,"應用有限元素法於板金成形極限能量準則之建立及應變路徑之模擬",機械工程研究所,台南,國立成功大學,碩士論文,1991。
張智傑,"板金厚度對成形極限影響之研究",機械工程研究所,台南,國立成功大學,碩士論文,1996。
莊益彰,"應用能量準則於板金成形之可成形性評估系統之研究",機械工程研究所,台南,國立成功大學,碩士論文,1995。
莊偉倫,"應用有限元素法於板金成形極限之模擬分析",機械工程研究所,台南,國立成功大學,碩士論文,1990。
陳麒翰,"考慮晶粒尺寸效應對精微薄板成形之成形極限預測",機械工程學系,台南,國立成功大學,博士論文,2010。
傅建堯,"板金可成形性分析之整合性系統發展",製造工程研究所,台南,國立成功大學,碩士論文,1997。
董福清,"應用微影方法於網格微細化之板金可成形性研究,機械工程研究所,台南,國立成功大學,碩士論文,2000。
羅方韋,"鋁合金板件於電磁成形時之高應變率成形極限預測",機械工程研究所,台南,國立成功大學,碩士論文,2010。