簡易檢索 / 詳目顯示

研究生: 廖羿筑
Liao, Yi-Chu
論文名稱: 菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶缺陷之嗜中性球在免疫性關節炎中所扮演的角色
The role of NADPH oxidase 2-deficient neutrophils in immune-mediated arthritis
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 73
中文關鍵詞: 菸醯胺腺嘌呤二磷酸氧化酶慢性肉芽腫病嗜中性球免疫檢查點活性氧分子
外文關鍵詞: NOX2, chronic granulomatous disease, serum-induced arthritis, neutrophils, immune checkpoint, reactive oxygen species
相關次數: 點閱:135下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 免疫引起之關節炎是一種慢性發炎性關節疾病。雖然此疾病機轉已被廣泛地研究,但是在不同的氧化還原狀態下的細胞與分子如何造成免疫性關節炎這部分還尚未研究清楚。先前的研究指出菸醯胺腺嘌呤二磷酸氧化酶 (NOX2)所產生的活性氧分子(ROS)在K/BxN血清引起的關節炎中具有抗發炎的功能,並且NOX2缺陷的小鼠會產生更加嚴重的免疫性關節炎。雖然很多種白血球在免疫性關節炎的發展中都扮演了角色,但是主要表現NOX2的嗜中性球的角色還尚未釐清。所以,我們想要研究NOX2缺陷的嗜中性球以及正常的嗜中性球在免疫性關節炎中的免疫調節功能。初步的研究結果發現在NOX2缺陷的小鼠關節以及類風溼性關節炎的關節液中有比較多的嗜中性球浸潤和累積。同時我們也發現了在類風溼性關節炎之關節液中,氧化壓力標記的表現量比較低,IL-6則是有較高的表現量。接著,在使用RNA定序技術分析抗體活化之NOX2缺陷嗜中性球的基因表現之後,我們發現急性發炎性基因包括: IL1b、Cxcl2、Cxcl3、Cxcl10和Mmp3 等等的基因表現都上升。再進一步地使用gene set enrichment analysis (GSEA) 分析RNA定序的結果後發現,第一和第二型干擾素反應基因群、介白素6-JAK-STAT3訊息傳遞路徑基因群以及腫瘤壞死因子經由NF-B的訊息傳遞路徑基因群的表現量都在NOX2缺陷的嗜中性球中提高了。同時,我們發現NOX2缺陷嗜中性球抑制正常T細胞增生的功能較弱,其免疫檢查點的表現量也較少。在加強了免疫檢查點在NOX2缺陷的小鼠表現量之後,細胞激素的表現以及關節炎的嚴重性都降低了。我們也進一步地測量類風濕性關節炎之關節液中嗜中性球的免疫抑制功能,結果發現其功能是比周邊血液嗜中性球較差。總而言之,活性氧分子,特別是由NOX 2所產生的,在免疫引起的關節炎中具有極為重要的免疫調節功能,所以調節氧化還原狀態是具有潛力的目標可用於治療免疫引起的關節炎。

    Immune-mediated arthritis is an important inflammatory disease of joints causing debilitating morbidity in affected patients. The mechanisms underlying immune-mediated arthritis have been intensively investigated; however, the cellular and molecular factors contributing to the joint inflammation in different redox conditions have not been clearly elucidated. Previous research showed that NADPH oxidase 2 (NOX2)-produced reactive oxygen species (ROS) plays an anti-inflammatory role in K/BxN serum-transfer arthritis and NOX2-deficient mice tend to have more severe arthritis. Although many leukocytes play critical roles in the development of immune-mediated arthritis, the role of neutrophils, which are the main producers of ROS in inflammation, is still controversial. We hence assessed the immunomodulatory function of neutrophils from arthritic joints of NOX2-deficient and wild type mice in this study. We found more neutrophils accumulation in NOX2-deficient inflamed joints and synovial fluid of RA patients. The expression of oxidative stress markers is lower, whereas IL-6 expression is higher in synovial fluid of RA patients. RNA-sequencing and quantitative PCR revealed significantly increased expression of acute inflammation genes including IL1b, Cxcl2, Cxcl3, Cxcl10 and Mmp3 in activated neutrophils from the inflamed joints of NOX2-deficient mice. Moreover, gene set enrichment analysis (GSEA) showed enriched gene signatures in type I and II IFN responses, IL-6-JAK-STAT3 signalling pathway and TNF-a signalling pathway via NF-kB in NOX2-deficient neutrophils. In addition, we found that NOX2-deficient neutrophils expressed lower levels of PD-L1 and were less suppressive than WT neutrophils. Additionally, treatment of PD-L1-Fc decreased cytokine expression and ameliorated the severity of inflammatory arthritis. Furthermore, we found that neutrophils from synovial fluid of RA patient is less suppressive than peripheral neutrophils. Our results suggest that NOX2-derived ROS is critical for regulating the function and gene expression in arthritic neutrophils. Abnormal redox regulation may be targets of treatment for immune-mediated arthritis.

    Abstract I 中文摘要 III 目錄 VII 圖目錄 IX Chapter 1. Introduction 1 1.1 Immune-mediated arthritis 1 1.2 Neutrophils in immune-mediated arthritis 2 1.3 Phagocytic NADPH oxidase 3 1.4 Chronic granulomatous disease (CGD) 3 1.5 The role of redox in regulation of immune system 4 1.6 Neutrophil extracellular traps (NETs) in immune-mediated arthritis 5 1.7 The PD-1/PD-L1 (PD-L2) pathway 6 1.8 K/BxN serum-transfer arthritis model 7 1.9 Hypothesis and research goal 7 Chapter 2. Lower oxidant stress, more neutrophil infiltration and higher pro-inflammatory cytokine levels in inflamed joints of arthritic mice and RA patients 8 2.1 Background 8 2.2 Materials and Methods 10 2.3 Results 14 2.4 Discussion 16 2.5 Figures 17 Chapter 3. NOX2-deficient neutrophils from inflamed joints of arthritic mice exhibit higher pro-inflammatory and weakened immune checkpoint activities 24 3.1 Background 24 3.2 Materials and Methods 25 3.3 Results 31 3.4 Discussion 36 3.5 Figures 38 Chapter 4. Conclusion, Discussion and Prospects 54 4.1 Conclusion 54 4.2 Discussion 55 4.3 Prospects 60 References 62 Publications 73

    Aarts, C. E. M., Hiemstra, I. H., Tool, A. T. J., van den Berg, T. K., Mul, E., van Bruggen, R., & Kuijpers, T. W. (2019). Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter? Front Immunol, 10, 2144. doi:10.3389/fimmu.2019.02144

    Agod, Z., Fekete, T., Budai, M. M., Varga, A., Szabo, A., Moon, H., Pazmandi, K. (2017). Regulation of type I interferon responses by mitochondria-derived reactive oxygen species in plasmacytoid dendritic cells. Redox Biol, 13, 633-645. doi:10.1016/j.redox.2017.07.016

    Altmann, D. M. (2019). The immune regulatory role of neutrophils. Immunology, 156(3), 215-216. doi:10.1111/imm.13049

    Anjani, G., Vignesh, P., Joshi, V., Shandilya, J. K., Bhattarai, D., Sharma, J., & Rawat, A. (2020). Recent advances in chronic granulomatous disease. Genes Dis, 7(1), 84-92. doi:10.1016/j.gendis.2019.07.010

    Arnold, D. E., & Heimall, J. R. (2017). A Review of Chronic Granulomatous Disease. Adv Ther, 34(12), 2543-2557. doi:10.1007/s12325-017-0636-2

    Brandes, R. P., Weissmann, N., & Schroder, K. (2014). Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med, 76, 208-226. doi:10.1016/j.freeradbiomed.2014.07.046

    Bustamante, J., Arias, A. A., Vogt, G., Picard, C., Galicia, L. B., Prando, C., Casanova, J. L. (2011). Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol, 12(3), 213-221. doi:10.1038/ni.1992

    Campbell, A. M., Kashgarian, M., & Shlomchik, M. J. (2012). NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci Transl Med, 4(157), 157ra141. doi:10.1126/scitranslmed.3004801

    Canavan, M., Floudas, A., Veale, D. J., & Fearon, U. (2021). The PD-1:PD-L1 axis in Inflammatory Arthritis. BMC Rheumatol, 5(1), 1. doi:10.1186/s41927-020-00171-2

    Castell, S. D., Harman, M. F., Moron, G., Maletto, B. A., & Pistoresi-Palencia, M. C. (2019). Neutrophils Which Migrate to Lymph Nodes Modulate CD4(+) T Cell Response by a PD-L1 Dependent Mechanism. Front Immunol, 10, 105. doi:10.3389/fimmu.2019.00105

    Chan, T. Y., Yen, C. L., Huang, Y. F., Lo, P. C., Nigrovic, P. A., Cheng, C. Y., Shieh, C. C. (2019). Increased ILC3s associated with higher levels of IL-1beta aggravates inflammatory arthritis in mice lacking phagocytic NADPH oxidase. Eur J Immunol, 49(11), 2063-2073. doi:10.1002/eji.201948141

    Christensen, A. D., Haase, C., Cook, A. D., & Hamilton, J. A. (2016). K/BxN Serum-Transfer Arthritis as a Model for Human Inflammatory Arthritis. Front Immunol, 7, 213. doi:10.3389/fimmu.2016.00213

    Chuang, K. P., Huang, Y. F., Hsu, Y. L., Liu, H. S., Chen, H. C., & Shieh, C. C. (2004). Ligation of lymphocyte function-associated antigen-1 on monocytes decreases very late antigen-4-mediated adhesion through a reactive oxygen species-dependent pathway. Blood, 104(13), 4046-4053. doi:10.1182/blood-2004-05-1822

    Conti, V., Izzo, V., Corbi, G., Russomanno, G., Manzo, V., De Lise, F., Filippelli, A. (2016). Antioxidant Supplementation in the Treatment of Aging-Associated Diseases. Front Pharmacol, 7, 24. doi:10.3389/fphar.2016.00024

    Costa, S., Bevilacqua, D., Cassatella, M. A., & Scapini, P. (2019). Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology, 156(1), 23-32. doi:10.1111/imm.13005

    De Ravin, S. S., Naumann, N., Cowen, E. W., Friend, J., Hilligoss, D., Marquesen, M., Malech, H. L. (2008). Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol, 122(6), 1097-1103. doi:10.1016/j.jaci.2008.07.050

    Dinauer, M. C. (2019). Inflammatory consequences of inherited disorders affecting neutrophil function. Blood, 133(20), 2130-2139. doi:10.1182/blood-2018-11-844563

    Ding, L., Hayes, M. M., Photenhauer, A., Eaton, K. A., Li, Q., Ocadiz-Ruiz, R., & Merchant, J. L. (2016). Schlafen 4-expressing myeloid-derived suppressor cells are induced during murine gastric metaplasia. J Clin Invest, 126(8), 2867-2880. doi:10.1172/JCI82529

    Doughan, A. K., Harrison, D. G., & Dikalov, S. I. (2008). Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res, 102(4), 488-496. doi:10.1161/CIRCRESAHA.107.162800

    Edilova, M. I., Akram, A., & Abdul-Sater, A. A. (2020). Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. doi:10.1016/j.bj.2020.06.010

    Efimova, O., Szankasi, P., & Kelley, T. W. (2011). Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells. PLoS One, 6(1), e16013. doi:10.1371/journal.pone.0016013

    Flannagan, R. S., Cosio, G., & Grinstein, S. (2009). Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol, 7(5), 355-366. doi:10.1038/nrmicro2128

    Fuchs, T. A., Abed, U., Goosmann, C., Hurwitz, R., Schulze, I., Wahn, V., Zychlinsky, A. (2007). Novel cell death program leads to neutrophil extracellular traps. Journal of Cell Biology, 176(2), 231-241. doi:10.1083/jcb.200606027

    Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M., & Kast, W. M. (2001). Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol, 166(9), 5398-5406. doi:10.4049/jimmunol.166.9.5398

    Gardiner, G. J., Deffit, S. N., McLetchie, S., Perez, L., Walline, C. C., & Blum, J. S. (2013). A role for NADPH oxidase in antigen presentation. Front Immunol, 4, 295. doi:10.3389/fimmu.2013.00295

    Gennery, A. (2017). Recent advances in understanding and treating chronic granulomatous disease. F1000Res, 6, 1427. doi:10.12688/f1000research.11789.1

    Glennon-Alty, L., Hackett, A. P., Chapman, E. A., & Wright, H. L. (2018). Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med, 125, 25-35. doi:10.1016/j.freeradbiomed.2018.03.049

    Grieshaber-Bouyer, R., Radtke, F. A., Cunin, P., Stifano, G., Levescot, A., Vijaykumar, B., ImmGen, C. (2021). The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat Commun, 12(1), 2856. doi:10.1038/s41467-021-22973-9

    Hattori, H., Subramanian, K. K., Sakai, J., Jia, Y., Li, Y., Porter, T. F., Luo, H. R. (2010). Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis. Proc Natl Acad Sci U S A, 107(8), 3546-3551. doi:10.1073/pnas.0914351107

    Hoffmann, M. H., & Griffiths, H. R. (2018). The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med, 125, 62-71. doi:10.1016/j.freeradbiomed.2018.03.016

    Holmdahl, R., Sareila, O., Pizzolla, A., Winter, S., Hagert, C., Jaakkola, N., Backdahl, L. (2013). Hydrogen peroxide as an immunological transmitter regulating autoreactive T cells. Antioxid Redox Signal, 18(12), 1463-1474. doi:10.1089/ars.2012.4734

    Hsu, J. M., Li, C. W., Lai, Y. J., & Hung, M. C. (2018). Posttranslational Modifications of PD-L1 and Their Applications in Cancer Therapy. Cancer Res, 78(22), 6349-6353. doi:10.1158/0008-5472.CAN-18-1892

    Hsu, S. M., Yang, C. H., Shen, F. H., Chen, S. H., Lin, C. J., & Shieh, C. C. (2015). Proteasome inhibitor bortezomib suppresses nuclear factor-kappa B activation and ameliorates eye inflammation in experimental autoimmune uveitis. Mediators Inflamm, 2015, 847373. doi:10.1155/2015/847373

    Hu, C. F., Wu, S. P., Lin, G. J., Shieh, C. C., Hsu, C. S., Chen, J. W., Chen, S. J. (2021). Microglial Nox2 Plays a Key Role in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol, 12, 638381. doi:10.3389/fimmu.2021.638381

    Huang, Y. F., Lo, P. C., Yen, C. L., Nigrovic, P. A., Chao, W. C., Wang, W. Z., Shieh, C. C. (2015). Redox Regulation of Pro-IL-1beta Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice. Antioxid Redox Signal, 23(12), 973-984. doi:10.1089/ars.2014.6136

    Hultqvist, M., Olofsson, P., Holmberg, J., Backstrom, B. T., Tordsson, J., & Holmdahl, R. (2004). Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci U S A, 101(34), 12646-12651. doi:10.1073/pnas.0403831101

    Hultqvist, M., Olsson, L. M., Gelderman, K. A., & Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends Immunol, 30(5), 201-208. doi:10.1016/j.it.2009.03.004

    Ichikawa, A., Kuba, K., Morita, M., Chida, S., Tezuka, H., Hara, H., Imai, Y. (2013). CXCL10-CXCR3 enhances the development of neutrophil-mediated fulminant lung injury of viral and nonviral origin. Am J Respir Crit Care Med, 187(1), 65-77. doi:10.1164/rccm.201203-0508OC

    Iwai, Y., Hamanishi, J., Chamoto, K., & Honjo, T. (2017). Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci, 24(1), 26. doi:10.1186/s12929-017-0329-9

    Khandpur, R., Carmona-Rivera, C., Vivekanandan-Giri, A., Gizinski, A., Yalavarthi, S., Knight, J. S., Kaplan, M. J. (2013). NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med, 5(178), 178ra140. doi:10.1126/scitranslmed.3005580

    Kietzmann, T., Petry, A., Shvetsova, A., Gerhold, J. M., & Gorlach, A. (2017). The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol, 174(12), 1533-1554. doi:10.1111/bph.13792

    Korganow, A. S., Ji, H., Mangialaio, S., Duchatelle, V., Pelanda, R., Martin, T., Mathis, D. (1999). From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity, 10(4), 451-461.

    Kouskoff, V., Korganow, A. S., Duchatelle, V., Degott, C., Benoist, C., & Mathis, D. (1996). Organ-specific disease provoked by systemic autoimmunity. Cell, 87(5), 811-822. doi:10.1016/s0092-8674(00)81989-3

    Kusmartsev, S. A., Li, Y., & Chen, S. H. (2000). Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol, 165(2), 779-785. doi:10.4049/jimmunol.165.2.779

    Lerner, A., Neidhofer, S., Reuter, S., & Matthias, T. (2018). MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract Res Clin Rheumatol, 32(4), 550-562. doi:10.1016/j.berh.2019.01.006

    Levescot, A., Chang, M. H., Schnell, J., Nelson-Maney, N., Yan, J., Martinez-Bonet, M., Nigrovic, P. A. (2021). IL-1beta-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J Clin Invest, 131(18). doi:10.1172/JCI141008

    Li, J. L., Lim, C. H., Tay, F. W., Goh, C. C., Devi, S., Malleret, B., Ng, L. G. (2016). Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2. J Invest Dermatol, 136(2), 416-424. doi:10.1038/JID.2015.410

    Lin, W., Shen, P., Song, Y., Huang, Y., & Tu, S. (2021). Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol, 12, 635021. doi:10.3389/fimmu.2021.635021

    Liu, S. Y., Tsai, M. Y., Chuang, K. P., Huang, Y. F., & Shieh, C. C. (2008). Ligand binding of leukocyte integrin very late antigen-4 involves exposure of sulfhydryl groups and is subject to redox modulation. Eur J Immunol, 38(2), 410-423. doi:10.1002/eji.200737556

    Lood, C., Blanco, L. P., Purmalek, M. M., Carmona-Rivera, C., De Ravin, S. S., Smith, C. K., Kaplan, M. J. (2016). Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med, 22(2), 146-153. doi:10.1038/nm.4027

    Lopez-Pedrera, C., Barbarroja, N., Patino-Trives, A. M., Luque-Tevar, M., Collantes-Estevez, E., Escudero-Contreras, A., & Perez-Sanchez, C. (2020). Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int J Mol Sci, 21(23). doi:10.3390/ijms21239067

    Mayadas, T. N., Cullere, X., & Lowell, C. A. (2014). The multifaceted functions of neutrophils. Annu Rev Pathol, 9, 181-218. doi:10.1146/annurev-pathol-020712-164023

    McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. N Engl J Med, 365(23), 2205-2219. doi:10.1056/NEJMra1004965

    Moro, K., Ealey, K. N., Kabata, H., & Koyasu, S. (2015). Isolation and analysis of group 2 innate lymphoid cells in mice. Nat Protoc, 10(5), 792-806. doi:10.1038/nprot.2015.047

    Nathan, C., & Cunningham-Bussel, A. (2013). Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat Rev Immunol, 13(5), 349-361. doi:10.1038/nri3423

    O'Neil, L. J., & Kaplan, M. J. (2019). Neutrophils in Rheumatoid Arthritis: Breaking Immune Tolerance and Fueling Disease. Trends Mol Med, 25(3), 215-227. doi:10.1016/j.molmed.2018.12.008

    Ohl, K., & Tenbrock, K. (2018). Reactive Oxygen Species as Regulators of MDSC-Mediated Immune Suppression. Front Immunol, 9, 2499. doi:10.3389/fimmu.2018.02499

    Olofsson, P., Holmberg, J., Tordsson, J., Lu, S., Akerstrom, B., & Holmdahl, R. (2003). Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet, 33(1), 25-32. doi:10.1038/ng1058

    Patsoukis, N., Wang, Q., Strauss, L., & Boussiotis, V. A. (2020). Revisiting the PD-1 pathway. Sci Adv, 6(38). doi:10.1126/sciadv.abd2712

    Qin, W., Hu, L., Zhang, X., Jiang, S., Li, J., Zhang, Z., & Wang, X. (2019). The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front Immunol, 10, 2298. doi:10.3389/fimmu.2019.02298

    Raptopoulou, A. P., Bertsias, G., Makrygiannakis, D., Verginis, P., Kritikos, I., Tzardi, M., Boumpas, D. T. (2010). The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum, 62(7), 1870-1880. doi:10.1002/art.27500

    Rojas Marquez, J. D., Li, T., McCluggage, A. R. R., Tan, J. M. J., Muise, A., Higgins, D. E., & Brumell, J. H. (2021). Cutting Edge: NOX2 NADPH Oxidase Controls Infection by an Intracellular Bacterial Pathogen through Limiting the Type 1 IFN Response. J Immunol, 206(2), 323-328. doi:10.4049/jimmunol.2000694

    Rosales, C. (2018). Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front Physiol, 9, 113. doi:10.3389/fphys.2018.00113

    Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol, 108(1), 377-396. doi:10.1002/JLB.4MIR0220-574RR

    Roux, C., Jafari, S. M., Shinde, R., Duncan, G., Cescon, D. W., Silvester, J., Gorrini, C. (2019). Reactive oxygen species modulate macrophage immunosuppressive phenotype through the up-regulation of PD-L1. Proc Natl Acad Sci U S A, 116(10), 4326-4335. doi:10.1073/pnas.1819473116

    Sareila, O., Kelkka, T., Pizzolla, A., Hultqvist, M., & Holmdahl, R. (2011). NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal, 15(8), 2197-2208. doi:10.1089/ars.2010.3635

    Schappi, M. G., Jaquet, V., Belli, D. C., & Krause, K. H. (2008). Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol, 30(3), 255-271. doi:10.1007/s00281-008-0119-2

    Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 13(11), 2498-2504. doi:10.1101/gr.1239303

    Shrishrimal, S., Kosmacek, E. A., & Oberley-Deegan, R. E. (2019). Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. Oxid Med Cell Longev, 2019, 4278658. doi:10.1155/2019/4278658

    Singel, K. L., & Segal, B. H. (2016). NOX2-dependent regulation of inflammation. Clin Sci (Lond), 130(7), 479-490. doi:10.1042/CS20150660

    Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. Lancet, 388(10055), 2023-2038. doi:10.1016/S0140-6736(16)30173-8

    Sokulsky, L. A., Garcia-Netto, K., Nguyen, T. H., Girkin, J. L. N., Collison, A., Mattes, J., Foster, P. S. (2020). A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2 Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. J Immunol, 205(9), 2468-2478. doi:10.4049/jimmunol.1901350

    Song, W., Ye, J., Pan, N., Tan, C., & Herrmann, M. (2020). Neutrophil Extracellular Traps Tied to Rheumatoid Arthritis: Points to Ponder. Front Immunol, 11, 578129. doi:10.3389/fimmu.2020.578129

    Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43), 15545-15550. doi:10.1073/pnas.0506580102

    Sugimoto, Y., Endo, D., & Aratani, Y. (2021). Mice Deficient in NOX2 Display Severe Thymic Atrophy, Lymphopenia, and Reduced Lymphopoiesis in a Zymosan-Induced Model of Systemic Inflammation. Inflammation, 44(1), 371-382. doi:10.1007/s10753-020-01342-6

    Tao, L., Lemoff, A., Wang, G., Zarek, C., Lowe, A., Yan, N., & Reese, T. A. (2020). Reactive oxygen species oxidize STING and suppress interferon production. Elife, 9. doi:10.7554/eLife.57837

    Turner, J. D., & Filer, A. (2015). The role of the synovial fibroblast in rheumatoid arthritis pathogenesis. Curr Opin Rheumatol, 27(2), 175-182. doi:10.1097/BOR.0000000000000148

    Wang, J. X., Bair, A. M., King, S. L., Shnayder, R., Huang, Y. F., Shieh, C. C., Nigrovic, P. A. (2012). Ly6G ligation blocks recruitment of neutrophils via a beta2-integrin-dependent mechanism. Blood, 120(7), 1489-1498. doi:10.1182/blood-2012-01-404046

    Whitmore, L. C., Hilkin, B. M., Goss, K. L., Wahle, E. M., Colaizy, T. T., Boggiatto, P. M., Moreland, J. G. (2013). NOX2 protects against prolonged inflammation, lung injury, and mortality following systemic insults. J Innate Immun, 5(6), 565-580. doi:10.1159/000347212

    Wing, K., Klocke, K., Samuelsson, A., & Holmdahl, R. (2015). Germ-free mice deficient of reactive oxygen species have increased arthritis susceptibility. Eur J Immunol, 45(5), 1348-1353. doi:10.1002/eji.201445020

    Winterbourn, C. C., Kettle, A. J., & Hampton, M. B. (2016). Reactive Oxygen Species and Neutrophil Function. Annu Rev Biochem, 85, 765-792. doi:10.1146/annurev-biochem-060815-014442

    Wright, H. L., Moots, R. J., Bucknall, R. C., & Edwards, S. W. (2010). Neutrophil function in inflammation and inflammatory diseases. Rheumatology (Oxford), 49(9), 1618-1631. doi:10.1093/rheumatology/keq045

    Wright, H. L., Moots, R. J., & Edwards, S. W. (2014). The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol, 10(10), 593-601. doi:10.1038/nrrheum.2014.80

    Yarosz, E. L., & Chang, C. H. (2018). The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw, 18(1), e14. doi:10.4110/in.2018.18.e14

    Zerdes, I., Matikas, A., Bergh, J., Rassidakis, G. Z., & Foukakis, T. (2018). Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene, 37(34), 4639-4661. doi:10.1038/s41388-018-0303-3

    Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., & Dong, W. (2016). ROS and ROS-Mediated Cellular Signaling. Oxid Med Cell Longev, 2016, 4350965. doi:10.1155/2016/4350965

    Zhong, J., Olsson, L. M., Urbonaviciute, V., Yang, M., Backdahl, L., & Holmdahl, R. (2018). Association of NOX2 subunits genetic variants with autoimmune diseases. Free Radic Biol Med, 125, 72-80. doi:10.1016/j.freeradbiomed.2018.03.005

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE